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Abstract

Circle actions on pseudomanifolds have been studied]iby using intersection cohomology
(see also4]). In this paper, we continue that study using a more powedal, the equivariant
intersection cohomology!| 2].

In this paper, we prove that the orbit spd@@nd the Euler class of the actidn: S x X > X
determine both the equivariant intersection conomologh®pseudomanifolX and its localization.

We also construct a spectral sequence converging to theae@unt intersection cohomology of
X whose third term is described in terms of the intersectidroomlogy ofB.

We consider an actio®: S’ x X — X of the circle on a pseudomanifoll whose orbit spac®
is again a pseudomanifold (cf. (1.1)). We have seertjriHat the intersection cohomology of is
determined byB and the Euler class H;(B). In this paper we prove that those two data determine
some other structures. The main results of this work areah@ing:

~» The equivariant intersection cohomoléglylﬁl (X) of X has aAe-perverse algebra structdrane
prove that this structure is determined Byand the Euler classe H;(B) (cf. Propositior2.2).

~> The localizatioh L , (X) of H. (X) has a perverse superalgebra structure. We prove that this
structure is determined B and the Euler classe Hz(B) (cf. Propositiond.2).

~» For each perversitp we construct a spectral sequence convergirig*tq (X) whose third term
S
is described in terms d& (cf. Propositior3.2)*.

In the Appendix, we illustrate the results of this work wittnse particular examples. In the sequel,
any manifold will be considered connected, second couetdtdussddf, without boundary and smooth
(of classC®).

*Departamento de Matematica Aplicalatematika Aplikatua Saila. UPV-EHU. Alameda de Urquijn.s48013 BIL-
BAO, SPAIN. joseignacio.royo@ehu.es

fUniv Lille Nord de France F-59 000 LILLE, FRANCE. UArtois, baratoire de Mathématiques de Lens EA 2462.
Fédération CNRS Nord-Pas-de-Calais FR 2956. FacukéSdences Jean Perrin. Rue Jean Souvraz, S.P. 18. F-62 300
LENS, FRANCE.saralegi@euler.univ-artois.fr

1See [, 7].

2 Ae = H'(CP™).

“As C. Allday pointed out to us, this spectral sequence degéeinto the Skjelbred exact sequenceldf fvhenp = 0
(cf. Propositior3.5).
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1 Equivariant intersection cohomology

We introduce in this section the equivariant intersectioinamology [, 2] of a modelled action{].

1.1 Modelled actions.Under some assumptions, the orbit space of an action ofrttle oin a stratified
pseudomanifold is also a stratified pseudomanifold, wtsataileds'-pseudomanifold ing, sec. 4]. In
this work we shall use a variation of this concept: modelletibas ofS" on unfolded pseudomanifoltls

For the rest of this work, we fix a modelled actidn S* x X — X. We denote byB the orbit space
X/S'. The actiond may induce two kind of strata of:

e astratunSis mobilewhenS;, the isotropy subgroup of any point 8f is finite and
e astratunsSis isfixedwhenS;, the isotropy subgroup of any point 8f is S'.

Recall that the regular stratuRiis mobile WithS; = {1}. In this work, we need the refinement of fixed
strata introduced in/|, sec. 5.6]

» a fixed stratun® is perversé when the Euler class of the actidn _: S x L, — L, does not
vanish, where is the link of S.

1.2 Equivariant intersection cohomology We fix p a perversity o and we WriteQ;(X) the complex
of intersection dierential forms an(H-I;(X) the intersection cohomologyrelatively to the perversityp.
As S' is connected and compact, the cohomology of the subcomil&x-imvariant formsg;(X) is
H;(X).

Recall that the classifying space ®f is just CP* whose cohomology is the free dgéa where
le| = 2 andde = 0. Theequivariant intersection cohomology;!sj(X), relatively to the perversitp, is

the cohomology of the comple(ﬁ_z;(X) ® Ae, V), whereV is defined linearly from

V((a,B) ® e") = D(a, B) ® " + (-1)7(8,0) ® ™.

The equivariant intersection conomology generalizes sualequivariant conomology sinee (X)) =
0,S
H', (X) whenX is normal.

1.3 Ae-perverse algebras We have introduced ir8[ sec. 2] the notion of perverse algebra, perverse
morphism andx perverse isomorphism. Thefioent ring of these objects iR. When we replace
this ring by Ae, we get the notions oAe-perverse algebraAe-perverse morphisrand Ae-perverse
isomorphismIn this work, we deal with the following examples:

+ The quadruple (X) = @Qﬁ(X)@Ae, t,\, V] is a Ae-perverse algebra. Here, thee-
: PEPx
structure is given bye - ((o, 8) ® ") = (a, 5) ® e™™.

5 We refer the reader to’[ sec. 4] (see als@3[ sec. 1.1]) for the notion of a modelled action. The reasoyn wh work
with unfolded pseudomanifolds instead of considering pss#udomanifolds is that they support the de Rham intecsecti
cohomology we use in this work(cfL{J]).

6See B, sec. 1.2] for some examples. Notice that, as G. Friedmantgubout in P , there is a misprint in{, sec. 1.1]
in the definition of perverse stratum: it shouldg(Ls\X,) # H*((LS\ZLS)/Sl) ® H*(Sl), whereX,  is the singular part of
the link Ls. That definition is equivalent to the one we give above.

"For the notions related with the intersection cohomologyrefer the reader td ], sec. 3]
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+ Its cohomolong X) = (@ H  (X),,A O) is the theequivariant intersection cohomology
PePx
algebrawhich is aAe-perverse algebra.
+ The operatorr’: H(B)®Ae — H | (X), defined byt ([¢] ® €") = [(a,0)® "], is aAe-perverse
morphism. )

1.4 Equivariant Gysin sequence The main tool we use for the classification of modelled adics
the Gysin sequenéeve construct now. Fip a perversity ofX. Consider the short exact sequence

’

$s
O—>(Q(B)®Aed®1) (Q(X)@AeV) (G, (B)®Aed®1)—>0

wheren’ (@ ® ") = (a,0) ® e" andjgﬁ(a,ﬁ) ® e" = B® e". Each term is a dierential complex and

a Ae-module with the natural structure. Moreover, the mﬁ’gsandﬁ_ preserve these structures. The
. . . . . p
equivarian Gysin sequenceethe induced long exact sequence

4

i 5o $s . i-1 95 i+
- [H.(B)® Ae| -5 H' 09 L [H(G6,®)oAe] 5 [H (B)ere]" -

Here,s_([8] ® e") = [da+(-1)/Brel@e+(- 1)IB|L [B]@e”+1 For short, we shall write{1)#.° o = e
The connectlng morphism becomgs= e ®1+1.® ®e. Notice that the equivariant Gysin sequence permlts
us to obtain the equivariant intersection cohomolog»(arh terms of basitdata.

2 Classification of modelled actions

In this section, we prove th& and the Euler class determine the equivariant intersecbiomology
of X.

2.1 Fixing the orbit space®. ConsiderD;: S'x X, — X, and®,: S'x X, — X, two modelled actions
and writeB; andB, the corresponding orbit spaces.

An unfolded isomorphisni: B; — B, is optimalwhen it preserves the nature of the strata. In this
case, the two Euler perversities are eq@(r1(S)) = &(f(71(S))) for each singular stratur@ of X;.
We shall writee for this Euler perversity Now we can compare the two Euler classes Hz(Bl) and

e € Hz(Bz). We shall say thag; ande; are f-relatedif f;ez = €.
Proposition 2.2 Let X;, X, be two connected normal unfolded pseudomanifolds. Considemod-
elled actionsd;: §' x X; — X and®,: §' x X, — X,. Let us suppose that there exists an unfolded

isomorphism f B; — B, between the associated orbit spaces. Then, the two folipstatements are
equivalent:

(a) The isomorphism f is optimal and the Euler classesrel @ are f-related.
(b) There exists A e-perverse isomorphisi@: H(l(XZ) — H  (Xy) verifying Goyr'2 = n’lo(f ®1).

8The Gysin sequence for intersection conomology has beestremted in [, sec. 6]. In this article we use the notations
of [8, sec. 1.3]. Notice that, as G. Friedman pointed ougjnip the definition ofg;(B) given in [, sec. 1.3], the degree
should be shifted by 1, so th@f%(B) c Q"H(B).

90f the orbit space.

10see (cf. B, sec. 3.1]) for details.
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Proof. We proceed in two steps.

(8 = (b)] Since [f.e;] = f & = e = [&] then there existy € Q_(By) with f e = & — d(f.7).
Using this mapy, we construct for each perversifythe mapG; = F, ® 1: Q (X2) — Q L (X) (cf.
_p

[8, Proposition 3.2]). Sinc& = {F_} is a perverse isomorphism, th@’l— (G (Xz) - Q LX) is
aAe-perverse isomorphism. The equal@;ur’2 = n’lo(f x 1) comes from:

G, (7., (@®e") =F,(a.0)8e" = (f(a).0)® " =7, (f(a)®e"),

wherea € Q;(Bz).

(b) = (a)| Consider now the equivariant Gysin sequences associatbd txtionsp; andd,. The
two Gysin terms are writteqg and,G respectively. Sinceé2 oy, =T, o(f x 1) we can construct
the commutative diagram

HY (Br) — H. (%) Fam (g (Bz)) 6 % [H B @Al —5 H s
lféz G,, gl lf_e2®1 Géz
1 ",1.-e2 1 4;’1.732 "l

HLE) % K00 2 K6, B)) 5 [ B eAe] 5 W ()

where(: Ho(lg;(B)) — Ho(zg;(B)) is an isomorphism. Following the proof di,[Proposition 3.2] we

conclude that the isomorphisiis optimal, the operataf is the multiplication by a numbet € R\{0}
andf,e = 4 - e. Finally, the commutativityf f, ® 1) 06", = ¢, o gives thatl = 1 and therefore the
Euler classes; ande; are f-related. &

3 The basic spectral sequence

The Leray spectral sequence considered by Borel for thel eswdvariant conomology has been ex-
tended to the perverse framework ir}.[It converges td—|* . (X) and its second term H*(X) ® Ae.

We construct another spectral sequence converglhg th) whose third term is described in terms
of B. It is thebasic spectral sequencEirst of all, we present an auxiliary complex.

3.1 The co-Gysin complex The third term of the spectral sequence is described inst@fitheco-

* Q' (B
Gysin comple® K(B) = QE(B)'

- H(G,®) = HiB) 5 H(x(B) 5 H(6,®) -

Here,l [a] = [a], d;[a] = [de] andP_[e] = [@]. Now, we can describe the basic spectral sequence.

''An element ofK_(B) is writtena wherea € Q (B).
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Proposition 3.2 Consider a modelled actio®: S’ x X — X and fix a perversityp. There exists a
first quadrant spectral sequené@’r, dﬁ-r)}wo converging to the equivariant intersection cohomology

H;_sl (X) such that

(a) E/ = 0if jis an odd number and & 1;

DR

p.2s+

(s> 1
H' (B) ifj=0
(c) the second and third terms are J== E = 0 ° —
H(X(B))®R-el ifj > 0;
(g,00,) () ifj=1

d) the third djferential E'2J E™"is d (w®el) = .
) g % ol ) { (P,oe,00,) (W) @el™ ifj >2.

Proof. Consider the filtration- - ¢ FiQ;SI (X) c FQ (X)c---C FQ (X) = Q (X) defined by
FQ (X)) ={we gp (X)® Ae / dw € 9;'(X) ® Ae}. Thatis,
Ps

i+2]

(Q;(B) ® {O}) ®R-el @ d} Qi_fk(X) ®R el and

F Q (X) =
k=1
F Q‘*“(X) - (X) QR el @ @ Q'+l+2k(x) QR - el
which verifiesV (F Q (X)) (X) Following the standard procedure (see for exampledne

constructs a spectral sequerﬁ ol )} converging to the equivariant cohomolobly _ (X). We have
Bs

i+1
i.2j+1 _ Qﬁ (X)

% @ j
ICRCEICRaS

E.=(Q(Be(0)se and E,

i,2j+1

The diferentiald : E” > E
g p.0 p

i,2j+1 Ei 2j+2

is zero, and the dlierentiald,,: E”" — E“isgiven byd, ((e.f)®el) =
Q'ﬁ(B) if /=0

(8,0)® el*1. We conclude thaE'_;' = 7<lp(B) ®R-el if  =2j>0 . Thisgives (a)d, =0ifs>1

0 if i/ is odd

i.2]

and (b). o
The first diferentiald,,: E| — E';ll‘z‘ is given byd,,(a) = de andd, (6®ei) = da ®el. We

H' (B) if j=0

—EN=0 _
P2 H(X(B))®R-el if j>0.

Consider, for the computation of the thirdfi@rential, fr] € Hi(W;(B)). So, we have thatdp] €

'”(g (B)) ande ([da]) € H' (B). This givesd_([@] ® e) = e ([de]) = e,0_([@]). For the general case
j > 2we haved ([@] ®e)) = P e ([da]) ®el™t =P ed ([a]) ®el™! ThIS gives (d). )

i.2]

conclude thaE . This gives (c).
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3.3 The basic spectral sequence in the classic framewor/e consider here the usual cohomology,
that is, the casg = 0. For the sake of simplicity we also suppose thas normal.
In this context, the basic spectral sequence is a spectiaésee converging tbl ,(X) whose third

term is described in terms of the cohomologyBo&ndF, the union of fixed strata. In fact, as C. Allday
pointed out to us, this spectral sequence degeneratedhim®kielbred exact sequence (cf1]).

First of all, we fix some facts. The cohomology of the comgexB) = Q' (B) = Q (B) = Q;(B) is
H'(B, F) (cf. [10]). We shall writee: H'(B, F) — H™”(B, F) the map induced frore_. The long exact

i+1

sequence associated to the p&yH)is--- — H'(B,F) — H'(B) = H'(F) =5 %5 H (B,F) —

Lemma 3.4 Consider a modelled actioh: S xX — X where X is normal. There exists a first guadrant
spectral sequenciE, , d,)},., converging to H (X) such that
@) Eir‘j = 0if jis an odd number and e 1;
i.2j i2j . .
(b)E. =E_ ifs>1,
O =" H'(B) ifj=0
H(F)®R-el ifj>0;
(d) each E’ is a quotient of H(B) when r> 3;
;Zjl N Ei2+2j+1,2j—25 IS O

(f) for each s> 1, the dfferential d,,: E,- = H'(F)®R - e% — E, " is induced by(~1)° t0€% 4.

2s+1

(e) foreach s> 1and j+ s, the djferential d,,,: E

Proof. Considef(E,, d )},., the spectral sequence given by the above Propositidn f00. It converges
toH’ . (X) which is H"l (X) sinceX is normal. Let us verify the properties.
0:s s

(a) and (b) Clear.

(c) SinceX is normal, therB is normal and thereforH;(B) = H'(B). The long exact sequence
associated to the short exact sequenee Q;(B) — Q;(B) — (K;(B) — 0 becomes

S HBF) - H(B) 5 H (% (B)) L H @B, F) -

So, there exists an isomorphigmH (7( (B)) — H'(F) with do¢ = 8, andéoP_ = P. The result comes
now directly from the Propositiof.2
i,0

, Z i -1 i
(d) Forr = 2s+ 1> 3we haveE, =21 = Q(B) m.od ©) _ |oH (Bz
B, B, ~ BY/dQ(B)
To prove (e) and (f) , we proceed by induction®rTakings = 1, we have from Propositioh2and

o . (to€00) (W) ifj=1 (toe0d) (W) if j=1
the above identificationsl,(w® e!) = = o .
(£0P oro@0d) (W) @ el if j > 2 0 if j >2.
Let us now suppose that the result is true $br< S. The casg < sis straightforward by dimension
reasons! Consider noyv> s. The induction hypothesis and (b) give the isomorphismrchai

i.2j
V... Ei’2j = $ - Ei’2j — Ei’2j A 4 Elzzj - Hl(F)®R' eJ’

Js 2s+1 Z|+1-21—1 BlsZJ 2s 2s-1
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j
with V| wj = (a0, 0)® el + Z(ak,[g’k) ® el % | = £[ag] ® el. On the other hand, we have that the defi-

k=1
i.2 i+2s+1,2j-2s

Z Z

I 2] 2s+1 2s+1

nition of the diferentiald = —— 5 — 4 , — |s

25+1 25+1 Z|+l.21—1 BI.Z] Z|+25+2.21—25—1 + B|+25+l.2]—25

i
A,y (@) = (o + (-1l A €+ (-1)lBes, ) @ ei== + > (o f) @ el

k=s+1

and thereforeY,_.od,.,)(wj) = ¢ [das + (1)BBs A € + (—1)Ws+1|,85+1] ®el™s=0sinceBs A € € Qi;(B)-
This impliesd,,,, (w;) = 0 for j > s. It remains the casg= s. Forws = V_ ([w] ®e®) € E'zs = % we

2s

have from (d)

S

[das+ (—1)PIBs A €] = [Z(—l)s‘kdak A e5K

k=0

A, (ws) = (-1)’[dao A €] =

(=1)°(coe% O )[@o] = (=1)(coe% d)é[an] = (—=1)(coe% d)[w],

S s k-1
since ) (~1)" dar A e = d(Z ( (-2 Y (1Yo A ] ® es«] belongs t8”.  a

k=1 k=1 =1
The particular geometry of this spectral sequence givedoiaGysin sequenc@n the sense ofd]).

Proposition 3.5 Consider a modelled actioh: S' x X — X where X is normal. We have the Skjelbred
exact sequence

— [H"(F)(zgzvf’e]i LA H"(B) L H(X) 9, [|—|"(F)Q—9A>°e]i+1 A, H*(B) -,

where
- afe] = [(a,0)®1];
- B([w] ® €°) = (=1)°(co€% d)[w];

i j
-0 Z(ak,ﬁk) ®ek| = Zf[a_k] ® ek
k=0 k=1
Proof. Consider the exact sequence-8 @ E v @ H(F)® e s B, H®) ™™ 0,
whereV is induced byv_,, : E ** = E'zjzs H™(F) ®R e, and proceed as irs[ pag. 8]. .y.

4 Localization

The localization of the equivariant intersection cohongglas a cohomological theory introduced in
[1,2]. Infact, itis aresidual cohomology since it depends onightmrhood of the fixed point sét The
usuat? LocalizationTheorem establishes that the IocallzathmX) of H’ ,(X)isin factH (F) ® R(e).

This doesn’t hold for the generic case since the links ofsw@ee no Ionger spheres.

2WhenX is a manifold, the family of strat&y is reduced to the regular stratum.



COHOMOLOGICAL STUDY OF CIRCLE ACTIONS ... March 25, 2011° 8

4.1 Definition and properties. Denote byR(e) the field of fractions ofAe. The localization of the
equivariant intersection cohomologyLLs (X) = (X)® .R(e). It is not a graded (e)-vector space

overZ but overz, by: Lf LX) = (X)@ L (X) = (X)®AQR(e)® H (X)®AER(e) It verifies the
following properties. "

even even

(a) The localizatior.” . (X) is the usual Iocalizatioh*l(X) whenX is normal.
0,S S

(b) A perverse algebra isperverse superalgebrahen the cofficient ring isR(e) (instead ofR) and
itis graded over, (instead of oveE). In the same manner, we introduce the notionsest/erse superal-

gebra morphismandperverse superalgebraisomorphisithe quadrupIeL X) = [@ L  (X),eA O]

is a perverse superalgebra. In the other hand, the operédtoH (B) ® R(e) — L ,(X), defined by
" (beP)=n"(b®1)®, P,Iisaperverse superalgebra morphism.

(c) The localization of the equivariant intersection cohmdmgy is a residual cohomology: the inclu-
sion induces a perverse superalgebra |somorphlspQX) = (U) whereU c Xis any neighborhood

of the fixed point seF. In fact,L’ ,(X) can be seen as the global sections of a sttéadiefined orF.
This sheaf isonstructible that |sp locally constant on each fixed strat8mits stalk is given by ).

(d) Let us suppose thatis compact. Given two complementary perversipesdq the wedge prod-
uct induces the Poincaré Duality |somorphls‘m LX) = e “(X). This gives theR(e)-isomorphism:

L (X) =L (X) (cf. [1]). It preserves (resp. mverts) the superalgebra straatdnen dimX is even (resp.
odd)

(e) The equivariant Gysin sequence can be written in thevatg way

’

. T o . € 01+ o€
- > H (B)® Ae — H' ,(X) — H'(G,(B)) ® Ae —H (B)@Ae -,
Bs

which is a long exact sequence in the categonxeimodules. Since localization is an exact functor, we
get thelocalized Gysin sequence

EL®1+I ®e

n’ ﬁl
o H (B)eR(e) — L (X) — H(G,(B) @ R(e) ——— H (B)®R(e) >

where "_([c]® R) = '_[c]® R Thus, we get.” _(X) in terms of basic data.
Ae Ae 1
P P S

The following result relates the Euler class with the lazatiion of the equivariant intersection coho-
mology of X. It is obtained straightforward from Propositiar?.

Proposition 4.2 Let X, X, be two connected normal unfolded pseudomanifolds. Cartswdenodelled
actions®;: S" x X; — X; and®,: S" x X, — X,. Let us suppose that there exists an unfolded isomor-
phism f: B; — B, between the associated orbit spaces. Then, the first folgpatatement implies the
second one:

(a) The isomorphism f is optimal and the Euler classesral @ are f-related.
(b) There exists a perverse superalgebra isomorpHé’sanl X)) — le (Xy) verifying Kor) =
7T'1'0(f ®1).

The reciprocal to this Theorem does not hold: just consiterHopf action or§® and the action by
multiplication on the second factor 6f x S*. The Euler classes areffiirent, but as the actions are free,
both localizations vanish.
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5 Appendix.

We illustrate the results of this work with some particulardalled action®: S’ x X — X. We present:
(a) the Gysin and co-Gysin terms, (b) the equivariant ietetten cohomology and (c) the localization
of the equivariant intersection cohomology.

5.1 The pseudomanifoldX is a manifold. Consider the case Wheﬁ_ie< P
(@ H'(6,(B)) = H__(B) (cf. [7, sec. 6.4]) ancH'(%K (B)) = (B) (cf. [5]). In particular,

U\
ol
o

H*(g‘a(B)) = H'(B,F) andH"(?(a'(B)) = H'(F).

) ) ) ) i_2 L
b)H () =H (X),E.=H (B andE, = [ [H "~ ls)@ el forj > 0.
pst st p2 P S

(c) Ljsl (X) =H(F)®R(e) = |_ (X).

5.2 Free action These actions are characterized by the condgierx = 0.

(@) H*(g‘b(B)) = H (B) andH"(?Cp(B)) -

(b) The basic spectral sequence degenerates at the seconaie we havdr-l (X) =H (B) The
Ae-module structure is given by- b = e A b. The perverse super structure comes from theB of

(c) L ,(X) = 0. We observe that neither the Euler classor the Euler perversitg are determined
by the Iocallzatlon of the intersection cohomology.

5.3 Action without perverse strata. These actions are characterized by the cond#gieri.
(a) We haveg (B) = Q (B) and?( (B) = (B).

‘7:\

hell
I

H. (B) if j=0
E|2] — - .
(b) H' (B)eel ifj>0

2
(c) The perverse super structure comes from th#. of

5.4 The euler clas®is zera. In particular, all the fixed strata are non-perverse. Weshav
(@H'(6,(B)) =H_ (B)andH (K (B)) = H" (B).

j

><I

(b) H (X) =H (B) ) H (B) The basic spectral sequence degenerates at the seconchtbime a

haveH" LX) = Hﬁ(B) ) { . (B)® A e} The Ae-module struture is given by - (bo,b; ® ") =
. PS L B
O,by®e+b® e“*l)
(c)L” LX) = . (B) ® R(e). The perverse super structure comes from thds.of
ps -p—

>(I

13In this range the intersection cohomology)¢toincides with its cohomology (see for exemplé]).
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5.5 Local calculation Consider a chart, ¥) of a fixed pointx lying on a stratunS. The open
subsetU is S -invariant and describes the local geometry neatt can be equivariantly retracted by
isomorphisms teL,, endowed with the actio,_. So, it is enough to consider the cade= cL;. We
have

H'(G,(Ls/s")) ifi<m-2
@H'(G,(Urs))) =1 Kerfe,: H(G,(Lo/s")) — HI7(Lo/s")) ifi=m-1
0 ifi >m

(cf. [7, sec. 7.2)]).
(b) The computation ol . (U) is achieved through the following step-by-step proceduetq the
PS ) )
perversity defined byg = ponU\S andg(UnNS) = p(UNS)-1=m-1. We havel—lnsl ) = Hqsl V),
fori # m,m+ 1, and the exact sequence

0> H" (U)> H" (U) > H(L)®Ae 5 H" (U) > H" (U) > 0
as PS as P

p.S

For example, when the actiah _ is free we get that
HE(L,/9) .
— " — ; QAN ey.
Ker {e,: HT(Ly/s") - H(Ly/s")]

H (U)=H"(L/S)e{H (L/S) @ Aejo {

B (b A e by ® e"L by ® e™) if |os] <m-3
TheAe-product is induced byg-(by, by®e", bs®e") ={ (0,by Ae®1+b,®e™ by®e™) if by =m-2
(0,b,® e™, b, ® e + by ® e™?) if by =m-1.

(c) We have a long exact sequence
oL (U)o L (U) - HI(L)@RE 5 L, (U) > L (U) > -
a.s S as 7S
Whend,_ is free then
. H(Ly/s")
1) L™ (V)= e _ 1
0 Rer e iy (L) AT (L)

®H(L, /Sl)} ®R(e).
The perverse super structure comes from thehISqSSl.
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