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Non-linear evolution equations and hyperelliptic covers of elliptic curves

1. Introduction 1.1. A huge variety of nonlinear integrable processes and phenomena in physics and mathematics can be described by a few nonlinear partial derivative equations (e.g.: Korteweg-deVries and Kadomtsev-Petviashvili, 1D and 2D Toda, sine-Gordon, nonlinear Schrödinger ). For almost 40 years a full range of methods coming from distinct areas were developped in order to deal and present exact solutions of the latter equations (e.g.: [START_REF] Airault | Rational and elliptic solutions of the Korteweg-deVries equation and a related many body problem[END_REF] till [START_REF] Zakharov | A scheme for integrating the non-linear equations of mathematical physics by the methods of the inverse scattering problem[END_REF] and their references). Zero-curvature equations, Lax pair's presentation and inverse scattering methods revolutionized the whole domain ( [START_REF] Lax | Periodic solutions of the KdV equation[END_REF], [START_REF] Zakharov | A scheme for integrating the non-linear equations of mathematical physics by the methods of the inverse scattering problem[END_REF]). Rational and trigonometric exact solutions ( [START_REF] Airault | Rational and elliptic solutions of the Korteweg-deVries equation and a related many body problem[END_REF], [START_REF] Calogero | Solution of the one dimensional n-body problems with quadratic and/or inversely quadratic pair potentials[END_REF], [START_REF] Hirota | Direct methods of finding exact solutions of non-linear evolution equations[END_REF]) were followed by quasi-periodic ones, also called finite-gap, given in terms of the theta function of an arbitrary hyperelliptic curve, via the Its-Matveev formula or its variants ( [START_REF] Dubrovin | Nonlinear equations of KdV type, finite-band linear operators and Abelian varieties[END_REF], [START_REF] Its | Hill's operator with a finite number of lacunae and multisoliton solutions of the Korteweg-de Vries equation[END_REF]). A few years later I.M. Krichever made a major contribution in [START_REF] Krichever | Integration of non-linear equations by the methods of Algebraic Geometry[END_REF], extending the latter results to finite-gap solutions of the KP equation associated to an arbitrary compact Riemann surface. M. Sato's infinite dimensional approach, developped in the beginning of the 80's ( [START_REF] Sato | Soliton equations as dynamical systems on an infinite dimensional Grassmann manifold[END_REF], [START_REF] Segal | Loop groups and equations of KdV type[END_REF], [START_REF] Kashiwara | The τ -function of the Kadomtsev-Petviashvili equation[END_REF]), further generalized Krichever's dictionnary as well as the classical theta and Baker-Akhiezer function. From then on, all previously studied non-linear evolution equations were reconsidered, and considerable effort was made in order to find doubly periodic solutions to each one of them. The starting point to this new trend was Krichevers's seminal article [START_REF] Krichever | Elliptic solutions of the KP equation and integrable systems of particles[END_REF]. The first doubly periodic solutions to the KdV equation and a remarkable connection with the elliptic Calogero-Moser integrable system had already been found (e.g.: [START_REF] Airault | Rational and elliptic solutions of the Korteweg-deVries equation and a related many body problem[END_REF] & [START_REF] Dubrovin | A periodicity problem for the Korteweg-deVries-Sturm-Liouville equations. Their connection with algebraic geometry[END_REF], as well as [START_REF] Calogero | Solution of the one dimensional n-body problems with quadratic and/or inversely quadratic pair potentials[END_REF] for the rational/trigonometric case), but [START_REF] Krichever | Elliptic solutions of the KP equation and integrable systems of particles[END_REF] generalizes to an equivalence between the elliptic C-M integrable system and the KP solutions, doubly periodic in x. More precisely, given n ≥ 1 and the lattice L ⊂ C, the corresponding elliptic Calogero-Moser integrable system is solved. Its (2n-dimensional) phase space is cut out by the Jacobian Varieties of an n-dimensional family of genus n marked compact Riemann surfaces, each one of which (is effectively constructed and) gives rise to KP solutions L-periodic in x ∈ C. The analogous problems for the KdV, 1D Toda, NL Schrödinger, sine-Gordon equations and related problems ( [START_REF] Mckean | The spectrum of Hill's equation[END_REF], [START_REF] Mumford | An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related nonlinear equations[END_REF], [START_REF] Previato | Hyperelliptic quasi-periodic and soltion solutions fo the nonlinear Schrödinger equation[END_REF]) amount to finding hyperelliptic curves equipped with a projection onto X, satisfying specific geometrical properties, as briefly explained hereafter. Let indeed π : (Γ, p) → (X, q) be an arbitrary ramified cover, where π(p) = q and (X, q) is the elliptic curve (C/L, 0). Up to a translation, there exist canonical copies of Γ and X inside Jac Γ, the Jacobian variety of Γ. Consider the flag {0}

V 1 Γ,p . . . V g Γ,p , of hyperosculating spaces to Γ at p, and T o X the tangent line to (the copy of ) X, inside Jac Γ.

The d-th case of the KP equation: 3 4 u yy + ∂ ∂x u t + 1 4 (6uu x -u xxx ) .

We will call π : (Γ, p) → (X, q) a d-osculating cover if T o X ⊂ V d Γ,p \V d-1 Γ,p . Such covers, studied and constructed for any d ≥ 1, give rise to KP solutions L-periodic with respect to the d-th KP flow (cf. [START_REF] Treibich | Solitons Elliptiques; Progress in Math[END_REF] for d = 1 and [START_REF] Treibich | Matrix elliptic solitons[END_REF] for any other d).

The d-th case of the KdV equation:

u t + 1 4 (6uu x -u xxx ).
Recall that p ∈ Γ is a Weierstrass point of the hyperelliptic curve Γ, if and only if there exists a degree-2 projection Γ → P 1 , ramified at p. Or in other words, if and only if there exists an involution, say τ Γ : Γ → Γ, fixing p and such that the quotient curve Γ/τ Γ is isomorphic to P 1 . Let π : (Γ, p) → (X, q) be a d-osculating cover such that Γ is hyperelliptic and p ∈ Γ a Weierstrass point. Then, all KdV solutions classically associated to (Γ, p) are L-periodic with respect to the d-th KdV flow.

The Non Linear Schrödinger: ip y + p xx ∓ 8|p| 2 p = 0 and the 1D Toda case:

∂ 2 ∂t 2 ϕ n = exp(ϕ n -ϕ n-1 ) -exp(ϕ n+1 -ϕ n ).
Let π : (Γ, p + ) → (X, q) be a 1-osculating cover (i.e.: also called a tangential cover in [START_REF] Treibich | Tangential polynomials and elliptic solitons[END_REF]) such that Γ is hyperelliptic and p + ∈ Γ is not a Weierstrass point. Then, all nonlinear Schrödinger & 1D Toda solutions classically associated to (Γ, p + , τ Γ (p + )), are L-periodic in x and in t, respectively.

The sine-Gordon case: u xx -u tt = sinu.

Let Γ be a hyperelliptic curve, equipped with a projection π : Γ → X and two Weierstrass points, say p, p ′ ∈ Γ, such that the tangent line

T o X is contained in the plane V 1 Γ,p + V 1 Γ,p ′ ,
generated by the tangents to Γ at p and p ′ (inside Jac Γ). Then, up to choosing suitable local coordinates of Γ at p and p ′ , the sine-Gordon solutions classically associated to (Γ, p, p ′ ) are L-periodic in x.

The KP case being rather well understood, we will focus on the three other cases, and in particular, on ramified projections π : Γ → X, of a hyperelliptic curve onto the fixed elliptic one, marked at, either one or two Weierstrass points (KdV and sine-Gordon cases), or two points exchanged by the hyperelliptic involution. Studying the tangent and osculating spaces at the marked points (in Jac Γ) is an interesting geometric problem which, I believe, does not need any further motivation. It was first considered, however, through its links with L-periodic solutions of the Korteweg-deVries equation (e.g.: [START_REF] Airault | Rational and elliptic solutions of the Korteweg-deVries equation and a related many body problem[END_REF], [START_REF] Dubrovin | A periodicity problem for the Korteweg-deVries-Sturm-Liouville equations. Their connection with algebraic geometry[END_REF], [START_REF] Its | Hill's operator with a finite number of lacunae and multisoliton solutions of the Korteweg-de Vries equation[END_REF], [START_REF] Krichever | Elliptic solutions of the KP equation and integrable systems of particles[END_REF], [START_REF] Smirnov | Elliptic solutions of the Korteweg-deVries equation[END_REF], [START_REF] Treibich | Solitons Elliptiques; Progress in Math[END_REF] for d = 1 and [START_REF] Smirnov | Solutions of the KdV equation, elliptic in t[END_REF], [START_REF] Akhmetshin | Elliptic families of solutions of the Kadomtsev-Petviashvili equation, and the field analog of the elliptic Calogero-Moser system[END_REF], [START_REF] Flédrich | Paires 3-tangentielles hyperelliptiques et solutions doublement périodiques en t de l'équation de Korteweg-de Vries[END_REF], [START_REF] Flédrich | Hyperelliptic osculating covers and KdV solutions periodic in t[END_REF] for d = 2), as well as the Toda, sine-Gordon and nonlinear Schrödinger equations (e.g.: [START_REF] Smirnov | Finite-gap solutions of the abelian Toda Lattice of genus 4 and 5 in elliptic functions[END_REF], [START_REF] Bobenko | Periodic finite-zone solutions of the sine-Gordon equation[END_REF], [START_REF] Smirnov | Elliptic solution of the nonlinear Schrödinger equation and modified Kortewegde Vries equationRussian[END_REF]). Studying their general properties (such as the relations between the genus and the degree of the cover), and constructing examples in any genus, will be the main issues of this article.

After fixing a lattice L ⊂ C defining the marked elliptic curve (X, q) := (C/L, 0), we will develop in section 3 a well suited algebraic-surface approach, for studying the structure of all ramified covers of X we are interested in, and their canonical factorization through a particular algebraic surface. Natural numerical invariants will then be defined, in terms of which we will characterize the latter covers and, ultimately, construct arbitrarily high genus examples to each case.

1.2. We sketch hereafter the structure and main results of our article.

(1) We start section 2defining the Abel rational embedding of a curve Γ, of positive genus g, into its generalized Jacobian, Jac Γ, and construct the flag of hyperosculating spaces

{0} V 1,p . . . V g,p = H 1 (Γ, O Γ )
, at the image of any smooth point p ∈ Γ. From then on, we restrict to Jacobians of hyperelliptic curves such that Jac Γ contains the elliptic curve (X, q) = (C/L, 0), or equivalently, to any hyperelliptic cover π : (Γ, p) → (X, q). Dualizing such a cover π, we obtain a homomorphism ι π : X → Jac Γ, with image an elliptic curve isogeneous to X. Let d be the smallest positive integer, called the osculating order of π, such that the tangent line defined by

ι π (X) is contained in V d,p ⊂ H 1 (Γ, O Γ ). Whenever p ∈ Γ is a Weierstrass point, π
is called a hyperelliptic d-osculating cover, and gives rise to KdV solutions, L-periodic with respect to the d-th KdV flow. Such covers are characterized by the existence of a particular projection κ : Γ → P 1 (2.6.). Given any hyperelliptic cover π, marked at, either two points exchanged by the hyperelliptic involution, or two Weierstrass points, we also find analogous characterizations for π to solve, the NL Schrödinger & 1D Toda or the sine-Gordon case (2.9., 2.10.).

(2) The latter characterizations 2.6. pave the way to the algebraic surface approach developed in the remaining sections. The main characters are played by three projective surfaces and corresponding morphisms, canonically associated to X: π S : S → X : a particular ruled surface;

e : S ⊥ → S : the blow-up of S, at the 8 fixed points of its involution; ϕ : S ⊥ → S : a projection onto an anticanonical rational surface.

(3) We construct in section 3 the projective surfaces S and S ⊥ , equipped with natural involutions τ and τ ⊥ , as well as S, the quotient of S ⊥ by τ ⊥ . We then prove that any hyperelliptic d-osculating cover π : (Γ, p) → (X, q) factors through S ⊥ , and projects onto a rational irreducible curve in S (3.7. & 3.8.). An analogous characterization is in order, for π to solve the NL Schrödinger & 1D Toda or the sine-Gordon case (3.9.).

(4) In section 4 we fix a complex elliptic curve (X, q) = (C/L, 0), and give the original motivation for studying hyperelliptic d-osculating covers of X. We start recalling the definition of the Baker-Akhiezer function ψ D , associated to the data (Γ, p, λ, D), where Γ is a smooth complex projective curve of positive genus g, λ a local parameter at p ∈ Γ and D a non-special effective divisor of Γ. In case (Γ, p) is a hyperelliptic curve marked at a Weierstrass point, we give the Its-Matveev (I-M) exact formula for the KdV solution associated to ψ D , as a function of infinitely many variables {t 2j -1 , j ∈ N * }.

We end up section 4 proving that any hyperelliptic d-osculating cover of C/L, gives rise to KdV solutions L-periodic in t 2d-1 .

(5) In section 5 we take up again the algebraic surface set up developped in section 3, recalling that any hyperelliptic d-osculating cover π : (Γ, p) → (X, q) factors through an equivariant morphism ι ⊥ : Γ → ι ⊥ (Γ) ⊂ S ⊥ , before projecting onto the rational irreducible curve Γ := ϕ ι ⊥ (Γ) ⊂ S.

The ramification index of π at p and the degree of ι ⊥ : Γ → ι ⊥ (Γ) ⊂ S ⊥ , say ρ and m, are natural numerical invariants attached to π. We also define its type, γ = (γ i ) ∈ N 4 , by intersecting ι ⊥ * (Γ) with four suitably chosen exceptional divisors (5.2.). We assume henceforth that m = 1 and calculate the linear equivalence class of Γ ⊥ ⊂ S ⊥ . Basic congruences and inequalities for the latter invariants follow (5.4. & 5.5.). For example, the genus of Γ satisifies (2g + 1) 2 ≤ (2d -1) 8n + 2d -1 . Any hyperelliptic cover solving the other three cases also factors through S ⊥ and projects onto a rational irreducible curve in S. Similar congruences and inequalities for their invariants follow as well (5.6., 5.7. & 5.8.) (6) At last, in section 6 we focus on M H X (n, d, 1, 1, γ), the set of of degree-n hyperelliptic d-osculating covers, of type γ, not ramified at the marked point and birational to their natural images in S ⊥ (i.e.: such that ρ = m = 1).

For any given (n, d) ∈ N * × N * , we find explicit types γ ∈ N 4 satisfying γ (2) = (2d -1)(2n -2) + 3, for which we give an effective construction (leading ultimately to explicit equations) of the corresponding covers. We thus obtain (d -1)-dimensional families of arbitrarily high genus marked curves, solving the d-th KdV case. A completely analogous constructive approach can be worked out for the other three cases.

2. Jacobians of curves and hyperelliptic d-osculating covers 2.1. Let P 1 denote the projective line over C and (X, q) the elliptic curve (C/L, 0), where L is a fixed lattice of C. By a curve we will mean hereafter a complete integral curve over C, say Γ, of positive arithmetic genus g > 0. If Γ is smooth, its Jacobian variety is a complete connected commutative algebraic group of dimension g. For a singular irreducible curve of arithmetic genus g instead, the analogous picture decouples into canonically related pieces, as briefly explained hereafter. We have, on the one hand, the moduli space of degree-0 invertible sheaves over Γ, still denoted by Jac Γ and called the generalized Jacobian of Jac Γ. It is a connected commutative algebraic group, canonically identified to H 1 (Γ, O * Γ ), with tangent space at its origin equal to H 1 (Γ, O Γ ). In particular, it is g-dimensional, although not a complete variety any more.

The latter is related to the Jacobian variety of the smooth model of Γ. More generally, let j : Γ → Γ be any partial desingularization and consider the natural injection O Γ → j * (O * Γ), with quotient N j , a finite support sheaf of abelian groups. From the corresponding exact cohomology sequence we can then extract

0 → H 0 (Γ, N j ) → H 1 (Γ, O * Γ ) j * → H 1 ( Γ, O * Γ) → 0 or 0 → H 0 (Γ, N j ) → Jac Γ j * → Jac Γ → 0.
Hence, the homomorphism j * : Jac Γ → Jac Γ, L → j * (L), is surjective, with kernel the affine algebraic group H 0 (Γ, N j ).

On the other hand, we have the moduli space W (Γ), of torsionless, zero Euler characteristic, coherent sheaves over Γ, also called compactified Jacobian of Γ, on which Jac Γ acts by tensor product. Taking direct images by any partial desingularization j : Γ → Γ, defines an equivariant embedding j * : W ( Γ) → W (Γ), such that ∀ F ∈ W ( Γ), ∀L ∈ Jac Γ, we have the projection formula j * ( F ⊗ j * (L)) = j * ( F )⊗ L. Hence, a Jac Γ-invariant stratification of W (Γ), encoding the web of different partial desingularizations between Γ and its smooth model. Let me stress that, up to choosing the marked points, any singular irreducible hyperelliptic curves gives rise to KdV, 1D Toda and NL Schrödinger solutions, parameterized by the compactified Jacobian W (Γ) (cf. [START_REF] Segal | Loop groups and equations of KdV type[END_REF]6.).

For any curve Γ, let Γ 0 and Jac Γ denote, respectively, the open subset of smooth points of Γ and its generalized Jacobian. Recall that for any smooth point p ∈ Γ 0 , the Abel morphism, A p : Γ 0 → Jac Γ, p ′ → O Γ (p ′ -p), is an embedding and A p (Γ 0 ) generates the whole jacobian. For any marked curve (Γ, p) as above, and any positive integer j, let us consider the exact sequence of

O Γ -modules 0 → O Γ → O Γ (jp) → O jp (jp) → 0,
as well as the corresponding long exact cohomology sequence :

0 → H 0 (Γ, O Γ ) → H 0 Γ, O Γ (jp) → H 0 Γ, O jp (jp) δ → H 1 (Γ, O Γ ) → . . . ,
where δ :

H 0 Γ, O jp (jp) → H 1 (Γ, O Γ ) is the cobord morphism and H 1 (Γ, O Γ )
is canonically identified with the tangent space to Jac Γ at 0.

According to the Weierstrass gap Theorem, for any d = 1, . . . , g := genus(Γ), there exists 0 < j < 2g such that δ H 0 Γ, O jp (jp) is a d-dimensional subpace, denoted hereafter by V d,p .

For a generic point p of Γ we have V d,p = δ H 0 Γ, O dp (dp) (i.e. : j = d).

In any case, the above filtration {0}

V 1,p . . . V g,p = H 1 (Γ, O Γ ) is the, so- called, flag of hyperosculating spaces to A p (Γ) at 0. For example, V 1,p is equal to δ H 0 Γ, O p (p) , the tangent to A p (Γ) at 0. Proposition 2.2. ([33]1.6.)
Let (Γ, p, λ) be a hyperelliptic curve, equipped with a local parameter λ at a smooth Weierstrass point p ∈ Γ 0 , and consider, for any odd integer j = 2d -1 ≥ 1, the exact sequence of O Γ -modules:

0 → O Γ → O Γ (jp) → O jp (jp) → 0 ,
as well as its long exact cohomology sequence

0 → H 0 (Γ, O Γ ) → H 0 Γ, O Γ (jp) → H 0 Γ, O jp (jp) δ → H 1 (Γ, O Γ ) → . . . , δ being the cobord morphism. For any, m ≥ 1, we also let [λ -m ] denote the class of λ -m in H 0 Γ, O mp (mp) . Then V d,p is generated by δ [λ 2l-1 ] , l = 1, .., d . In other words, the d-th oscu- lating subspace to A p (Γ) at 0 is equal to δ H 0 Γ, O jp (jp) , for j = 2d -1.

Definition 2.3.

A finite marked morphism π : (Γ, p) → (X, q), such that Γ is a hyperelliptic curve and p ∈ Γ a smooth Weierstrass point, will be called a hyperelliptic cover. Let [ -1] : (X, q) → (X, q) denote the canonical symmetry, fixing the origin q ∈ X, as well as the three other half-periods {ω j , j = 1, 2, 3}, and τ Γ : (Γ, p) → (Γ, p) the hyperelliptic involution. Let us recall that the quotient curve Γ/τ Γ is isomorphic to

P 1 and [ -1] • π = π • τ Γ .
Definition 2.5. Let π : (Γ, p) → (X, q) be a finite marked morphism and let ι π : X → Jac Γ denote the group homomorphism q ′ → A p π * (q ′ -q) . We will say that π has osculating order d, or equivalently, that it is a d-osculating cover, if

T o X ⊂ H 1 (Γ, O Γ ), the tangent to ι π (X) at 0 is contained in V d,p \V d-1,p .
If π also happens to be a hyperelliptic cover, we will simply say that it is a hyperelliptic d-osculating cover.

The osculating order of π is a geometrical invariant, bounded by the arithmetic genus of Γ, which we may want to know. The following hyperelliptic d-osculating criterion, analog to Krichever's tangential one (cf. [START_REF] Krichever | Elliptic solutions of the KP equation and integrable systems of particles[END_REF] p.289), will be instrumental for its calculation, as well as for further developpment in section 5.. Theorem 2.6. Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic cover of arithmetic genus g. Then its osculating order d ∈ {1, . . . , g} is characterized by the existence of a projection κ : Γ → P 1 such that:

(1) the poles of κ lie along π -1 (q);

(2) κ+ π * (z -1 ) has a pole of order 2d -1 at p, and no other pole along π -1 (q). Furthermore, if τ Γ : Γ → Γ denotes the hyperelliptic involution of Γ, there exists a unique projection κ : Γ → P 1 satisfying properties (1) & (2) above, as well as: 1) ] , l = 1, .., k . On the other hand, the tangent to

(3) τ * Γ (κ) = -κ. Proof. According to 2.2., ∀k ∈ {1, .., g} the k-th osculating subspace V k,p is generated by δ [λ -(2l-
ι π (X) ⊂ Jac Γ at 0 is equal to π * H 1 (X, O X ) and generated by δ [π * (z -1 )] .
In other words, the osculating order d is the smallest positive integer such that

δ [π * (z -1 )] is a linear combination d l=1 a l δ [λ -(2l-1)
] , with a d = 0. Or equivalently, thanks to the Mittag-Leffler Theorem, if and only if there exists a projection κ : Γ → P 1 , with polar parts equal to π * (z -1 ) - 1) . The latter conditions on κ are equivalent to 2.6.( 1) & (2). Moreover, up to replacing κ by 1 2 κτ * Γ (κ) , we can assume κ is τ Γ -anti-invariant. Now, the difference of two such functions should be τ Γ -anti-invariant, while having a unique pole at p, of order strictly smaller than 2d -1 ≤ 2g -1. But the latter functions are all τ Γ -invariant, implying that the projection κ ( satisfying conditions 2.6.( 1), (2) & (3) ), is unique.

d l=1 a l λ -(2l-
Definition 2.7. The pair of marked projections (π, κ), satisfying 2.6.( 1), (2) & (3), will be called a hyperelliptic d-osculating pair, and κ the hyperelliptic d-osculating function associated to π. In the latter case, π gives rise to solutions of the KdV hierarchy, L periodic in the d-th KdV flow, as will be proved in section 4.

The following Proposition calculates the tangent at any point of the curve A p (Γ) ⊂ Jac Γ, and leads to a useful characterization of the hyperelliptic covers solving the other cases. Its proof follows along the same lines as 2.2.'s proof.

Proposition 2.8. Let (Γ, r, λ) be a hyperelliptic curve equipped with a local parameter at an arbitrary smooth point r ∈ Γ.

Then V 1 Γ,r ⊂ H 1 (Γ, O Γ ), the tangent line to A p (Γ) at A p (r), is generated by δ [λ -1 ] .
Corollary 2.9. Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic cover, p + ∈ Γ a non-Weierstrass point, p -:= τ Γ (p + ), and let T o X ⊂ H 1 (Γ, O Γ ) denote the tangent line defined by the elliptic curve ι π (X) ⊂ Jac Γ. Then, the data (π, p + , p -) solves the NL Schrödinger & 1D Toda case (i.e.:

T o X = V 1 Γ,p + = V 1 Γ,p -)
, if and only if there exists a projection κ : Γ → P 1 such that:

(1) the poles of κ lie in π -1 (q) ∪ {p + , p -}.

(2) κ+ π * (z -1 ) has simple poles at {p + , p -}, and no other pole along π -1 (q).

(3) τ * Γ (κ) = -κ.

Corollary 2.10. Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic cover equipped with two Weierstrass points p o , p 1 , and let T o X ⊂ H 1 (Γ, O Γ ) denote the tangent line defined by the elliptic curve ι π (X) ⊂ Jac Γ. Then, the data (π, p o , p 1 ) solves the sine-Gordon case (i.e.:

T o X ⊂ V 1 Γ,po + V 1 Γ,p1
), if and only if there exists a projection κ : Γ → P 1 such that:

(1) the poles of κ lie in π -1 (q) ∪ {p o , p 1 }.

(2) κ+ π * (z -1 ) has simple poles at {p 1 , p 2 }, and no other pole along π -1 (q).

(3) τ * Γ (κ) = -κ.

3.

The algebraic surface set up 3.1. We will construct hereafter a ruled surface π S : S → X, as well as a blowing-up e : S ⊥ → S, having a natural involution τ ⊥ : S ⊥ → S ⊥ , such that any hyperelliptic osculating cover π : (Γ, p) → (X, q) factors through π S ⊥ , via an equivariant morphism ι ⊥ : Γ → Γ ⊥ := ι ⊥ (Γ) ⊂ S ⊥ (i.e.: ι ⊥ • τ Γ = τ ⊥ • ι ⊥ ). We will also prove that Γ := ϕ(Γ ⊥ ), its image in the quotient surface S := S ⊥ /τ ⊥ , is an irreducible rational curve. Generally speaking, our main strategy, fully developped in section 5., will consist in translating numerical invariants of π : (Γ, p) → (X, q), in terms of the numerical equivalence class of the corresponding rational irreducible curve Γ ⊂ S and its geometric properties.

The whole relationship is sketched in the diagram below.

Γ ⊥ ⊂ S ⊥ π S ⊥ ! ! e % % u u u u u u u u u u u ϕ / / Γ ⊂ S p ∈ Γ π * * ι ⊥ 9 9 s s s s s s s s s s S πS q ∈ X Definition 3.3.
(1) Besides the origin ω o := q ∈ X, there are three other half-periods, say {ω 1 , ω 2 , ω 3 } ⊂ X, fixed by the canonical symmetry [ -1] : (X, q) → (X, q).

(2) Consider the open affine subsets U o := X \ {q} and U 1 := X \ {ω 1 } and fix an odd meromorphic function ζ : X → P 1 , with divisor of poles equal to (ζ) = q + ω 1 -ω 2 -ω 3 . Let π S : S → X denote the ruled surface obtained by identifying P 1 × U o with P 1 × U 1 over X \ {q, ω 1 } as follows:

∀q ′ = q, ω 1 , (T o , q ′ ) ∈ P 1 × U o is glued with (T 1 + 1 ζ(q ′ ) , q ′ ) ∈ P 1 × U 1 .
In other words, we glue the fibers of P 1 × U 0 and P 1 × U 1 , over any q ′ = q, ω 1 , by means of a translation. In particular the constant sections q ′ ∈ U i → (∞, q ′ ) ∈ P 1 × U i , for i ∈ {0, 1}, get glued together, defining a particular one of zero self-intersection, denoted by C o ⊂ S.

(3) The meromorphic differentials dT o and dT 1 get also glued together, implying that K S , the canonical divisor of S is represented by -2C o . Any section of π S : S → X, other than C o , is given by two non-constant morphisms f i :

U i → P 1 (i = 1, 2), such that f o = f 1 -1 ζ outside {q, ω 1 }.
A straightforward calculation shows that any such a section intersects C o , while having self-intersection number greater or equal to 2. It follows from the general Theory of Ruled Surfaces (cf. [START_REF] Hartshorne | Algebraic Geometry[END_REF]V.2) that C o must be the unique section with zero self-intersection. (5) The involutions

P 1 × U i → P 1 × U i , (T i , q ′ ) → -T i , [ -1] 
(q ′ ) (i = 0, 1), get glued under the above identification and define the involution τ : S → S, such that π S • τ = [ -1] • π S , already mentioned in 3.1.. In particular, τ has two fixed points over each half-period ω i , one in C o , denoted by s i , and the other one denoted by r i (i = 0, .., 3). ( 6) Let e : S ⊥ → S denote hereafter the blow-up of S at {s i , r i , i = 0, .., 3}, the eight fixed points of τ , and τ ⊥ : S ⊥ → S ⊥ its lift to an involution fixing the corresponding exceptional divisors s ⊥ i := e -1 (s i ), r ⊥ i := e -1 (r i ), i = 0, .., 3 . Taking the quotient of S ⊥ with respect to τ ⊥ , we obtain a degree-2 projection ϕ : S ⊥ → S onto a smooth rational surface S, ramified along the exceptional curves {s ⊥ i , r ⊥ i , i = 0, .., 3}. Let C ⊥ o and C o denote, respectively, the strict transform in S ⊥ of C o ⊂ S (respectively: the corresponding projections in S). For any i = 0, .., 3, let also s i and r i denote the projections in S of s ⊥ i and r ⊥ i , respectively. The canonical divisor of S, say K, satisfies

ϕ * ( K) = e * ( -2C o ) and is linearly equivalent to -2 C o - 3 i=0 s i .
The Lemma and Propositions hereafter, proved in [START_REF] Treibich | Matrix elliptic solitons[END_REF]2.3., 2.4. & 2.5., will be instrumental in constructing the equivariant factorization ι ⊥ : Γ → S ⊥ (3.1.).

Lemma 3.6.

There exists a unique, τ -anti-invariant, rational morphism κ s : S → P 1 , with poles over C o + π -1 S (q), such that over a suitable neighborhood U of q ∈ X, the divisor of poles of κ s + π * S (z -1 ) is reduced and equal to C o ∩ π -1 S (U ).

Proposition 3.7. For any hyperelliptic cover π : (Γ, p) → (X, q), the following conditions are equivalent:

(1) there is a projection κ : Γ → P 1 , satisfying properties 2.6.( 1), (2) & (3) ;

(2) there is a morphism ι

: Γ → S such that π = π S • ι , ι • τ Γ = τ • ι and ι * (C o ) = (2d -1)p.
In the latter case, π is a hyperelliptic d-osculating morphism ( 2.5.) and solves the d-th KdV case.

Proposition 3.8. For any hyperelliptic d-osculating pair (π, κ), the above morphism ι : Γ → S lifts to a unique equivariant morphism ι ⊥ : Γ → S ⊥ (i.e.:

τ ⊥ • ι ⊥ = ι ⊥ • τ Γ ).
In particular, (π, κ) is the pullback of (π S ⊥ , κ s ⊥ ) = (π S • e, κ s • e), and Γ lifts to a τ ⊥ -invariant curve, Γ ⊥ := ι ⊥ (Γ) ⊂ S ⊥ , which projects onto the rational irreducible curve Γ := ϕ Γ ⊥ ⊂ S.

Γ ⊥ ⊂ S ⊥ ϕ / / e π S ⊥ W W W W W W W W W W W W W W W W Γ ⊂ S Γ ι / / ι ⊥ w w w w w ; ; w w w w π * * ι(Γ) ⊂ S πS v v v v % % v v v v v X Proof.
The blow-up e : S ⊥ → S, as well as ι : Γ → S, can be pushed down to the corresponding quotients, making up the following diagram:

Γ 2:1 ι " " i i i i i i i i i i S ⊥ ϕ e } } { { { { { { { { { Γ/τ Γ ι/ " " i i i i i i i i S 2:1 S e } } { { { { { { { { S/τ
Moreover, since e : S → S/τ is a birational morphism and Γ/τ Γ is a smooth curve (in fact isomorphic to P 1 ), we can lift ι/ : Γ/τ Γ → S/τ to S, obtaining a morphism ι : Γ → S, fitting in the diagram:

S e d d d d d d d Γ ι Ò Ò Ò Ò @ @ Ò Ò Ò Ò ι a a a a a a a a S/τ S 2:1 } } } } > > } } }
Recall now that S ⊥ is the fibre product of e : S → S/τ and S → S/τ (cf. [START_REF] Treibich | Solitons Elliptiques; Progress in Math[END_REF] 

} } } } > > } } } Furthermore, since ι : Γ → S factors through Γ → Γ/τ Γ ∼ = P 1 , its image Γ := ϕ ι ⊥ (Γ) = ι(Γ) ⊂ S is a rational irreducible curve as claimed.
Analogously to the KdV case, any data (π, p + , p -) or (π, p 1 , p 2 ), solving the NL Schrödinger & 1D Toda or the sine-Gordon case, factors through an equivariant morphism ι ⊥ : Γ → S ⊥ , and its image Γ ⊥ := ι ⊥ (Γ) projects onto a rational irreducible curve in S. Proposition 3.9. Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic cover equipped with two points p ′ = p ′′ ∈ Γ such that the (divisor) sum p ′ + p ′′ is τ Γinvariant. Then, the following conditions are equivalent:

(1) there is a projection κ : Γ → P 1 , satisfying properties 2.9.( 1 For any data (π, p ′ , p ′′ , κ) as in 3.9., the morphism ι : Γ → S lifts to a unique equivariant morphism ι ⊥ : Γ → S ⊥ (i.e.: τ ⊥ • ι ⊥ = ι ⊥ • τ Γ ). In particular, (π, κ) is the pullback of (π S ⊥ , κ s ⊥ ) = (π S • e, κ s • e), and Γ lifts to a τ ⊥ -invariant curve, Γ ⊥ := ι ⊥ (Γ) ⊂ S ⊥ , which projects onto the rational irreducible curve Γ := ϕ Γ ⊥ ⊂ S.

Complex hyperelliptic curves and elliptic KdV solitons

4.1. -Let Γ be a smooth complex projective curve of positive genus g, equipped with a local coordinate at p ∈ Γ, say λ, as well as a non-special degree-g effective divisor D with support disjoint from p. Then the so-called Baker-Akhiezer function associated to the spectral data (Γ, p, λ, D) and denoted by ψ D , is the unique meromorphic function on C ∞ × (Γ\{p}) such that for any t = (t 1 , t 2 , . . . ) ∈ C ∞ :

(1) the divisor of poles of ψ D ( t, ), on Γ\{p}, is bounded by D;

(2) in a neighbourhood of p, ψ D ( t, λ) has an essential singularity of type:

ψ D ( t, λ) = exp ∞ 0<i t i λ -i 1+ ∞ 0<i ξ D i ( t)λ i .
For any i ≥ 1, differentiating ψ D , either with respect to t i , or i times with respect to x := t 1 , we obtain a meromorphic function with divisor of poles D + ip and same type of essential singularity at p as ψ D . We can therefore construct a differential polynomial of degree i in ∂ ∂x , with functions of t as coefficients, say P i ( ∂ ∂x ), such that ∂ ∂ti ψ D -P i ( ∂ ∂x )ψ D has the same properties as ψ D . The uniqueness of the latter BA function implies that ψ D ( t, λ) satisfies the (so-called KP ) hierarchy of partial derivatives equations

∂ ∂ti ψ D = P i ( ∂ ∂x )ψ D , i ∈ N * . 4.2.
Let us suppose in the sequel that (Γ, p) is a hyperelliptic curve, marked at a Weierstrass point, and λ an odd local parameter at p ∈ Γ. Or in other words, that there exists a degree-2 projection f : Γ → P 1 , with a double pole at p, and f (λ) = 1 λ 2 + O(λ 2 ). It is classically known then that the BA function ψ D ( t, λ), corresponding to any non-special degree-g effective divisor D of Γ, does not depend, up to an exponential, on the even variables {t 2j , j ∈ N * }. For example, choosing λ such that f (λ) = 1 λ 2 , we will have

ψ D = exp j t 2j f j ψ D {t2j =0}
.

It then follows that ψ

D {t2j =0}
solves the KdV hierarchy and u := -2 ∂ ∂x ξ D 1 the Korteweg-deVries equation:

u t3 = 1 4 (6u • u x + u xxx ) (x := t 1 ).
A more concrete formula, (due to A.Its and V.Matveev, cf. [START_REF] Its | Hill's operator with a finite number of lacunae and multisoliton solutions of the Korteweg-de Vries equation[END_REF]), is in order:

(I-M) u(t 1 , t 3 , t 5 , . . . ) = 2 ∂ 2 ∂x 2 log θ Γ (Z - ∞ 0<j t 2j -1 U j ) + c, where i) θ Γ : C g → C denotes the Riemann theta-function of Γ; ii) Z ∈ C g projects onto A p (D) and c ∈ C; iii) ∀j ≥ 1, (2j)! • U j = A (2j -1) p (λ) λ=0
, the (2j-1)-th derivative of A p (λ) at λ = 0.

Remark 4.3.

(1) The vectors {U k , 1 ≤ k ≤ j} generate V j,p , the j -th hyperosculating space to A p (Γ) at A p (p) (see 2.1.). (2) The above construction of KdV solutions can be generalized to any singular marked hyperelliptic curve (Γ, p), as recalled in [START_REF] Segal | Loop groups and equations of KdV type[END_REF]. The corresponding solutions are then parameterized by W (Γ), the compactified jacobian of Γ. Roughly speaking, any L ∈ W (Γ), in the complement of the theta divisor, corresponds to a non-special degree-g effective divisor, with support at the smooth points of Γ. Working in the frame of Sato's Grassmannian (cf. [START_REF] Sato | Soliton equations as dynamical systems on an infinite dimensional Grassmann manifold[END_REF], [START_REF] Segal | Loop groups and equations of KdV type[END_REF]6.), one can still define an analogous BA function, as well as a KdV solution. Hence, the highest the arithmetic genus, the biggest the family of KdV solutions. We are thus naturally led to allow singular marked hyperelliptic curves. (3) According to the (I-M) formula, the KdV solution u = -2 ∂ ∂x ξ D 1 is a t 2d-1elliptic KdV soliton (i.e.: doubly periodic in t 2d-1 ), if and only if U d generates an elliptic curve X ⊂ Jac Γ. Or in other words, if (Γ, p) → (X, q) is a smooth hyperelliptic d-osculating cover. (4) We will actually prove that any KdV solution associated to a hyperelliptic d-osculating cover, is doubly periodic in t 2d-1 , without assuming the above (I-M) formula, or that Γ is a smooth curve (see 4.5.). The original idea goes back to [START_REF] Krichever | Elliptic solutions of the KP equation and integrable systems of particles[END_REF], p.288-289.

Notations 4.4.

Choose a lattice L ⊂ C, equipped with a Z-basis (2ω 1 , 2ω 2 ), such that the elliptic curve (X, q) is isomorphic to the complex torus (C/L, 0), and let ζ(z) : C → P 1 , denote the ζ-Weierstrass meromorphic function. Recall (cf. [START_REF] Krichever | Elliptic solutions of the KP equation and integrable systems of particles[END_REF], p.283) that ζ is holomorphic outside L and characterized by the following properties:

∀z ∈ C \ L      ζ(z) = z -1 + O(z) , in a neighborhood of 0 ∈ C, ζ(z+ 2ω j ) = ζ(z)+ η j , j = 1, 2 , for some η 1 , η 2 ∈ C, satisfying Legendre's relation: η 1 2ω 2 -η 2 2ω 1 = 2π √ -1.
Proposition 4.5.

Let π : (Γ, p) → (X, q) be a genus-g, hyperelliptic d-osculating cover, κ the unique hyperelliptic d-osculating function associated to π, and choose λ, an odd local parameter at p, such that κ+ π * (z -1 ) = λ -(2d-1) . Then, for any non-special degree-g effective divisor D, with support disjoint from p, the KdV solution u = -

2 ∂ ∂x ξ D 1 associated to (Γ, p, λ, D) (see 4.2.), is L-periodic in t 2d-1 .
Proof. Denote again by ψ D ( t, λ) the BA function associated to D. Recall (see 2.4.) that κ has poles only over π -1 (q), and

κ+ π * ζ(z) = κ+ π * z -1 + O(z) = λ -(2d -1) + O(λ)
has a pole of order 2d -1 at p. We then prove, coupling the properties of ζ and κ, that for j = 1, 2, the function

φ j (p ′ ) = exp 2ω j κ(p ′ )+ ζ π(p ′ ) -η j π(p ′ )
is well defined and holomorphic all over Γ \ {p}, thanks to Legendre's relations, and has an essential singularity at p of the following type:

φ j (p ′ ) = exp 2ω j λ -(2d-1) + O(π(p ′ ) = exp 2ω j λ -(2d-1) 1+ O(λ) .
The main final argument run as follows. The uniqueness of the BA function ψ D ( t, λ) implies that

ψ D ( t+2ω j e 2d-1 , λ) = φ j (λ) • ψ D ( t, λ) ,
where e 2d-1 = (0, . . . 0, 1, 0 . . . ) ∈ C ∞ is the vector having a 1 at the (2d-1)-th place and 0 everywhere else. At last, comparing their developments around p we obtain the following equality:

∂ ∂x ξ D 1 ( t+2ω j e 2d-1 ) = ∂ ∂x ξ D 1 ( t) , j = 1, 2.
In other words, the KdV solution u = -2 ∂ ∂x ξ D 1 associated to the data (Γ, p, λ, D), is L-periodic in t 2d-1 .

5. The hyperelliptic d-osculating covers as divisors of a surface 5.1. Let us consider again the algebraic surface set up constructed in section 3, with the equivariant factorization of any hyperelliptic d-osculating cover through S ⊥ , and its projection onto a rational irreducible curve Γ ⊂ S. The corresponding diagram of morphisms, given hereafter, will also be useful for the NL Schrödinger & 1D Toda and sine-Gordon cases.

Definition 5.2.

For any i = 0, .., 3, the intersection number between the divisors ι ⊥ * (Γ) and r ⊥ i will be denoted by γ i , and the corresponding vector γ = (γ i ) ∈ N 4 called the type of π. Furthermore, γ (1) and γ (2) will denote, respectively, the sums γ (1) 

:= 3 i=0 γ i and γ (2) := 3 i=0 γ 2 i .
Remark 5.3. The next step concerns studying the above rational irreducible curves Γ ⊂ S. We will characterize their linear equivalence classes, and dress the basic relations between them and the numerical invariants of the corresponding hyperelliptic dosculating covers. These results, already known for d = 1 ( [START_REF] Treibich | Solitons Elliptiques; Progress in Math[END_REF]) and d = 2 ([10]), can be proven within the same framework for any other d > 2.

Lemma 5.4. Let π : (Γ, p) → (X, q) be a degree-n hyperelliptic d-osculating cover, ι ⊥ : Γ → Γ ⊥ its unique equivariant factorization through S ⊥ and ι := e • ι ⊥ . We let again γ denote the type of π, ρ its ramification index at p and m the degree of ι ⊥ : Γ → ι ⊥ (Γ). Then :

(1) ι * (Γ) is equal to m.ι(Γ) and linearly equivalent to nC o + (2d-1)S o ;

(2) ι * (Γ) is unibranch, and transverse to the fiber S o := π * S (q) at s o = ι(p); (3) ρ is odd, bounded by 2d -1 and equal to the multiplicity of ι * (Γ) at s o ; (4) the degree m divides n, 2d -1 and ρ, as well as γ i , ∀i = 0, .., 3; [START_REF] Bobenko | Periodic finite-zone solutions of the sine-Gordon equation[END_REF] 

γ o +1 ≡ γ 1 ≡ γ 2 ≡ γ 3 ≡ n(mod.2); (6) ι ⊥ * (Γ) is linearly equivalent to e * nC o +(2d -1)S o -ρ s ⊥ o - 3 i=0 γ i r ⊥ i .
Proof. (1) -Checking that ι * (Γ) is numerically equivalent to nC o +(2d -1)S o amounts to proving that the intersections numbers ι * (Γ) • S o and ι * (Γ) • C o are equal to n and 2d -1. The latter numbers are equal, respectively, to the degree of π : Γ → X and the degree of ι * (C o ) = (2d -1)p, hence the result. Finally, since ι * (Γ) and C o only intersect at s o ∈ S o , we also obtain their linear equivalence.

(2) & (3) -Let κ : Γ → P 1 be the hyperelliptic d-osculating function associated to π, uniquely characterized by properties 2.6.( 1), (2) & (3), and U ⊂ X a symmetric neighborhood of q := π(p). Recall that κ + π * (z -1 ) is τ Γ -anti-invariant and well defined over π -1 (U ), and has a (unique) pole of order 2d -1 at p. Studying its trace with respect to π we can deduce that ρ must be odd and bounded by 2d -1.

On the other hand, let ι * (Γ), S o so and ι * (Γ), C o so denote the intersection multiplicities at s o , between ι * (Γ) and the curves S o and C o . They are respectively equal, via the projection formula for ι , to ρ and 2d -1. At last, since ι * (Γ) is unibranch at s o and ι * (Γ), S o so = ρ ≤ 2d -1 = ι * (Γ), C o so , we immediately deduce that ρ is the multiplicity of ι * (Γ) at s o (and S o is transverse to ι * (Γ) at s o ).

(4) -By definition of m, we clearly have ι * (Γ) = m.ι(Γ), while {ρ, γ i , i = 0, .., 3} are the multiplicities of ι * (Γ) at different points of S. Hence, m divides n and 2d-1, as well as all integers {ρ, γ i , i = 0, .., 3}.

(5) -For any i = 0, .., 3, the strict transform of the fiber S i := π -1 S (ω i ), by the blow-up e : S ⊥ → S, is a τ ⊥ -invariant curve, equal to S ⊥ i := e * (S i ) -s ⊥ i -r ⊥ i , but also to ϕ * ( S i ), where S i := ϕ(S ⊥ i ). Hence, the intersection number ι ⊥ * (Γ) • S ⊥ i is equal to the even integer

ι ⊥ * (Γ) • S ⊥ i = ι ⊥ * (Γ) • ϕ * ( S i ) = ϕ * (ι ⊥ * Γ) • S i = 2 Γ • S i , implying that n = ι ⊥ * (Γ) • e * (S i ) is congruent mod.2 to ι ⊥ * (Γ) • S ⊥ i + ι ⊥ * (Γ) • (s ⊥ i + r ⊥ i ) ≡ ι ⊥ * (Γ) • (s ⊥ i + r ⊥ i )(mod.2).
We also know, by definition, that

γ i := ι ⊥ * (Γ) • r ⊥ i , while ι ⊥ * (Γ) • s ⊥ o = ρ, the multiplicity of ι * (Γ) at s o , and ι ⊥ * (Γ) • s ⊥ i = 0 if i = 0, because s i / ∈ ι(Γ). Hence, n is congruent mod.2, to ρ+ γ o ≡ 1+ γ o (mod.
2), as well as to γ i , if i = 0.

(6) -The Picard group P ic(S ⊥ ) is the direct sum of e * (P ic(S)) and the rank-8 lattice generated by the exceptional curves {s ⊥ i , r ⊥ i , i = 0, .., 3}. In particular, knowing that ι * (Γ) is linearly equivalent to nC o + (2d -1)S o , and having already calculated

ι ⊥ * (Γ) • s ⊥ i and ι ⊥ * (Γ) • r ⊥ i , for any i = 0, .., 3, we can finally check that ι ⊥ * (Γ) is linearly equivalent to e * nC o +(2d -1)S o -ρ s ⊥ o - 3 0 γ i r ⊥ i .
We are now ready to deduce the basic inequalities relating the numerical invariants, associated so far to any such cover π (i.e.: n, d, g, ρ, m, γ ). The arithmetic genus of the irreducible curve Γ := ϕ(Γ ⊥ ) ⊂ S, say g, can be deduced from 5.4.( 6) via the projection formula for ϕ : S ⊥ → S. We start proving the inequality 2g + 1 ≤ γ (1) , before deducing the main one (5.5.( 4)) from g ≥ 0.

Theorem 5.5. Consider any hyperelliptic d-osculating cover π : (Γ, p) → (X, q), of degree n, type γ, arithmetic genus g and ramification index ρ at p, and let m denote the degree of its canonical equivariant factorization ι ⊥ : Γ → ι ⊥ (Γ) ⊂ S ⊥ . Then the numerical invariants {n, d, g, ρ, m, γ} satisfy the following inequalities: ) its projection in S and consider an arbitrary degree-n hyperelliptic d-osculating cover of type γ, say π : (Γ, p) → (X, q), with ramification index ρ at p. We will let ι ⊥ : Γ → S ⊥ denote its unique equivariant factorization through π S ⊥ : S ⊥ → X (5.1.), Γ ⊥ := ι ⊥ (Γ) its image in S ⊥ and Γ the corresponding projection into S. Recall (5.4. & 5.5.) that the above numerical invariants must satisfy the following restrictions :

(1) 2g+1 ≤ γ (1) ; (2) ρ = 1 implies m = 1 ; (3) γ (2) ≤ 2(2d -1)(n -m)+ 4 m 2 -ρ 2 ; (4) (2g+1) 2 ≤ 8(2d -1)(n -m)+13 m 2 -4ρ 2 ≤ 8(2d -1)n+(2d -1) 2 . .
(1) ρ is an odd integer bounded by 2d -1;

(2)

γ o +1 ≡ γ 1 ≡ γ 2 ≡ γ 3 ≡ n(mod.2).
Furthermore, whenever m := deg(ι ⊥ : Γ → Γ ⊥ ) is equal to 1 i.e.: Γ is birational to Γ ⊥ , π can be canonically recovered from Γ := ϕ(Γ ⊥ ), and they all satisfy the following properties:

(3) Γ is an irreducible rational curve of non-negative arithmetic genus equal to

g := 1 4 (2d -1)(2n -2)+ 4 -ρ 2 -γ (2) ≥ 0; (4) Γ ⊥ is linearly equivalent to e * nC o + (2d -1)S o -ρs o ⊥ - 3 i=0 γ i r i ⊥ ;
(5) Γ intersects s o := ϕ(s o ⊥ ) at a unique point, where it is unibranch and has multiplicity ρ; Remark 6.3. We will restrict to the simpler case where ρ = 1, Γ is isomorphic to Γ ⊥ and Γ is isomorphic to P 1 . In other words, we will focus on degree-n hyperelliptic dosculating covers with ρ = m = 1, and of type γ satisfying γ (2) = (2d -1)(2n -2) + 3. We will actually choose γ = (2d -1)µ + 2ε, where µ is an arbitrary µ ∈ N 4 satisfying ,d,γ) we give a straightforward construction of M H X (n, d, 1, 1, γ) as a (d -1)-dimensional family of curves, embedded in S ⊥ (6.9.). Moreover, it can also be proved that any π ∈ M H X (n, d, 1, 1, γ) has a unique birational model in P 1 × X, as a linear combination of d specific polynomials with elliptic coefficients. The same can be done for 2ε = (d +1, d -1, d -1, d -1) if d is odd, or for 2ε = (d -2, d, d, d) if d is even; or when permuting and/or changing the signs of their coefficients.

µ o + 1 ≡ µ 1 ≡ µ 2 ≡ µ 3 (mod.2) and ε ∈ Z 4 is equal to ε = (d -1, d -1, d -1, 0). Given such triplet (n
We will need the following existence and irreducibility criteria. Proof. The properties satisfied by Γ ⊥ assure us that it is the strict transform of its direct image by e : S ⊥ → S, Γ := e * (Γ ⊥ ), and that the latter does not contain C o . We can also check, that Γ is smooth at p := e(p ⊥ ) and Γ ∩ C o = {p}. It follows, by 6.4., that (Γ, as well as its strict transform) Γ ⊥ is an irreducible curve. Proposition 6.6. ([35]6.2. ) Any α = (α i ) ∈ N 4 such that α (2) = 2n + 1 is odd gives rise to an exceptional curve of the first kind Γ α ⊂ S. More precisely, let k ∈ {0, 1, 2, 3} denote the index satisfying α k + 1 ≡ α j (mod.2), for any j = k, and

S k := π -1 S (s k ), then Γ α has self-intersection -1 and ϕ * ( Γ α ) ⊂ S ⊥ is the unique τ ⊥ -invariant irreducible curve linearly equivalent to e * (nC o + S k ) -s ⊥ k - 3 i=0 α i r ⊥ i .
Proof. Let Λ denote the unique numerical equivalence class of S satisfying The latter corollary will be generalized as follows: given any n, d ∈ N * , we will construct types γ = (2d -1)µ+2ε ∈ N 4 , such that γ o +1 ≡ γ 1 ≡ γ 2 ≡ γ 3 (mod.2) and γ (2) = (2n -2)(2d -1)+3, for which the linear system |Λ(n, d, 1, γ)| (see 6.2.) has dimension d -1 and a generic element isomorphic to P 1 . Hence, they will give rise to (d -1)-dimensional families of marked curves solving the d-th KdV case. Theorem 6.8. Let us fix d ≥ 2 , k ∈ {0, 1, 2, 3} , and µ ∈ N 4 such that µ o + 1 ≡ µ j (mod.2) (for j = 1, 2, 3). Pick any vector 2ε = (2ε i ) ∈ 2Z 4 , satisfying (∀i = 0, . . . , 3) , either

ϕ * (Λ) = e * (nC o + S k ) -s ⊥ k - 3 i=0 α i r ⊥ i . It has self-intersection Λ • Λ = -1,
|2ε i | = (2d -2)(1 -δ i,k ) , or      |2ε i | = d -(-1) δ i,k if d is odd , |2ε i | = d -2δ i,k if d is even ,
as long as γ := (2d -1)µ + 2ε ∈ N 4 , and let n satisfy γ (2) = (2d -1)(2n-2) + 3. Then | ϕ * Λ(n, d, 1, γ) | contains a (d -1)-dimensional subspace such that its generic element, say Γ ⊥ , satisfies the following properties:

(1) Γ ⊥ is a τ ⊥ -invariant smooth irreducible curve of genus g : = 1 2 (-1+γ (1) );

(

) Γ ⊥ can only intersect C ⊥ o at p ⊥ o := C ⊥ o ∩ s ⊥ o ; 2 
(3) ϕ(Γ ⊥ ) ⊂ S is isomorphic to P 1 . Corollary 6.9. Given (n, d, γ) ∈ N * × N * × N 4 as above, the moduli space M H X (n, d, 1, 1, γ) ( 6.2.) has dimension d -1, and a smooth generic element of genus g : = 1 2 (-1+ γ (1) ).

Proof of Theorem 6.8.. We will only work out the case γ := (2d -1)µ + 2ε, with ε = (0, d -1, d -1, d -1) .

For any other choice of ε, the corresponding proof runs along the same lines and will be skipped. In our case, the arithmetic genus g and the degree n satisfy: 2g + 1 = (2d -1)µ (1) + 6(d -1) and 2n = (2d -1)µ (2) + 4(d -1)(µ 1 +µ 2 +µ 3 )+ 6d -7.

Consider µ : = µ+ (1, 1, 1, 1), µ ′ : = µ+ (0, 2, 1, 1), µ ′′ = µ+ (0, 0, 1, 1), and let Z ⊥ , Z ′ ⊥ , Z ′′ ⊥ ⊂ S ⊥ denote the unique τ ⊥ -invariant curves linearly equivalent to: 2) .

1) Z ⊥ ∼ e * (m C o + S o ) -s ⊥ o -i µ i r ⊥ i , where 2m +1 = µ (2) ; 2) Z ′ ⊥ ∼ e * (m ′ C o + S 1 ) -s ⊥ 1 -i µ ′ i r ⊥ i , where 2m ′ +1 = µ ′ (2) ; 3) Z ′′ ⊥ ∼ e * (m ′′ C o + S 1 ) -s ⊥ 1 -i µ ′′ i r ⊥ i , where 2m ′′ +1 = µ ′′ ( 
Moreover, if µ o = 0 we choose µ = µ+ (-1, 1, 1, 1) and 2m +1 = µ (2) , and let Z ⊥ ⊂ S ⊥ denote the unique τ ⊥ -invariant curve Z ⊥ ∼ e * (mC o + S o ) -s ⊥ oi µ i r ⊥ i . However, if µ o = 0 we will simply put Z ⊥ : = Z ⊥ + 2r ⊥ o , so that in both cases, the divisors D ⊥ 0 := Z ⊥ +Z ⊥ + 2s ⊥ 0 and D ⊥ 1 := Z ′ ⊥ +Z ′′ ⊥ + 2s ⊥ 1 will be linearly equivalent. Let us also define,

µ (1) : = µ ′′ = µ + (0, 0, 1, 1), µ (2) : = µ + (0, 1, 0, 1), µ (3) : = µ + (0, 1, 1, 0), and let Z ⊥ (k) (k = 1, 2, 3) be the τ ⊥ -invariant curve of S ⊥ , linearly equivalent to e * (m (k) C o + S k ) -s ⊥ k -i µ (k)i r ⊥ i , where 2m (k) +1 = i µ 2 (k)i . At last, consider Z ⊥ ∼ e * (mC o +S o ) -s ⊥ o -i µ i r ⊥ i , where 2m+1 = i µ 2 i (6.2.
). The (d-1)-dimensional subspace of ϕ * Λ(n, d, 1, γ) we are looking for, will be made of all above curves. We first remark the following facts : a) we can check, via the adjunction formula, that any τ ⊥ -invariant element of ϕ * Λ(n, d, 1, γ) has arithmetic genus g : = 1 2 (-1+ γ (1) ), and is the pull-back by ϕ : S ⊥ → S, of a divisor of zero arithmetic genus of S; b) the following d -1 divisors

F ⊥ j := C ⊥ o + 3 k=1 (Z ⊥ (k) +2s ⊥ k )+jD ⊥ o + (d -2 -j)D ⊥ 1 , j = 0, ..., d -2 ,
as well as , implying that G ⊥ , F ⊥ j , j = 0, .., d -2 ⊂ ϕ * (Λ) , the (d -1)-subspace they span, is fixed component-free; e) any irreducible curve Γ ⊥ ∈ G ⊥ , F ⊥ j , j = 0, .., d -2 projects onto a smooth irreducible curve (isomorphic to P 1 ). In particular Γ ⊥ must be smooth outside ∪ 3 i=0 r ⊥ i .

G ⊥ := Z ⊥ + (d -1)D ⊥ o , are τ ⊥ -invariant, belong to ϕ * Λ(n,
f) the curves G ⊥ and F ⊥ o have no common point on any r ⊥ i (i = 0, .., 3), implying that Γ ⊥ , the generic element of G ⊥ , F ⊥ j , j = 0, .., d -2 , is smooth at any point of ∪ 3 i=0 r ⊥ i and satisfies the announced properties, i.e.:

(1) -Γ ⊥ is τ ⊥ -invariant, smooth and satisfies the irreducibility criterion 6.5.;

(2) -p ⊥ o is the unique base point of the linear system and Γ ⊥ ∩ C ⊥ o = {p ⊥ o };

(3) -its image ϕ(Γ ⊥ ) ⊂ S is irreducible, linearly equivalent to Λ(n, d, 1, γ) and of arithmetic genus 1 4 (2d -1)(2n-2)+ 3 -γ (2) = 0; hence, isomorphic to P 1 .

Proof of Corollary 6.9.. The degree-2 projection ϕ : Γ ⊥ → ϕ(Γ ⊥ ) is ramified at p ⊥ o and ϕ(Γ ⊥ ) is isomorphic to P 1 . Moreover, Γ ⊥ is a smooth irreducible curve linearly equivalent to ϕ * Λ(n, d, 1, γ) , of arithmetic genus g := 1 2 (γ (1) -1). In other words, the natural projection (Γ ⊥ , p ⊥ o ) ⊂ (S ⊥ , p ⊥ o )

π S ⊥ -→ (X, q) is a smooth degree-n hyperelliptic d-osculating cover of type γ, and genus g, such that (2n-2)(2d -1)+ 3 = γ (2) and 2g +1 = γ (1) . Remark 6.10.

(1) The irreducible components of the d generators G ⊥ , F ⊥ j , j = 0, .., d -2 are well known curves, for which one can provide explicit equations in P 1 × X. Hence, any element of M H X (n, d, 1, 1, γ) is birational to the zero set of a linear combination of d specific degree-n polynomials with coefficients in K(X), the field of meromorphic functions on X.

(2) Effective solutions to the NL Schrödinger & 1D Toda and sine-Gordon cases can also been found through an analogous method. Roughly speaking, we construct infinitely many 1-dimensional familes of solutions (for both cases), having arbitrary degree n, and arbitrary genus g. As we shall see, the results differ on whether the pair of marked points have same projection in X or not (and depend on the parity of n as well). The main results are given below (detailed proofs will be given elsewhere).

Proposition 6.11. (NL Schrödinger & 1D Toda restrictions) Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic cover, equipped with two non-Weierstrass points p + , p -∈ Γ, such that (π, p + , p -) solves the NL Schrödinger & 1D Toda case.Then, the arithmetic genus of Γ and the degree of π, say g and n, satisfy:

(1) (g + 1) 2 ≤ 4n -4 , if π(p + ) = π(p -) and n ≡ 0(mod 2);

(2) (g + 1) 2 ≤ 4n -8 , if π(p + ) = π(p -) and n ≡ 1(mod 2);

(3) (g + 1) 2 ≤ 4n , if π(p + ) = π(p -).

Proposition 6.12. (sine-Gordon restrictions) Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic cover, equipped with two Weierstrass points p o , p 1 ∈ Γ, such that (π, p o , p 1 ) solves the sine-Gordon case.Then, the arithmetic genus of Γ and the degree of π, say g and n, satisfy:

(1) g 2 ≤ 4n -4

, if π(p o ) = π(p 1 ) and n ≡ 0(mod 2);

(2) g 2 ≤ 4n -8 , if π(p o ) = π(p 1 ) and n ≡ 1(mod 2);

(3) g 2 ≤ 4n -2 , if π(p o ) = π(p 1 ).

Along with the latter restrictions we have the following effective results. Theorem 6.13. (odd degree NL Schrödinger & 1D Toda case) For any α ∈ N 4 and a ∈ X there exists a hyperelliptic cover π : (Γ, p) → (X, q), equipped with two non-Weierstrass points p + , p -∈ Γ such that:

(1) π(p + ) = a, p + = τ Γ (p -) and (π, p + , p -) solves the NL Schrödinger case;

(2) Γ has arithmetic genus g := α (1) + 1;

(3) deg(π) = α (2) + α (1) + 1 if a / ∈ {ω i }, hence π(p + ) = π(p -);

(4) deg(π) = α (2) + α (1) + 3 if a ∈ {ω i }, hence π(p + ) = π(p -).

Theorem 6.14. (even degree NL Schrödinger & 1D Toda case) For any α ∈ N 4 \ {0} and a ∈ X such that, either α (1) ≡ 0(mod 2) and a / ∈ {ω i }, or Theorem 6.18. (odd degree sine-Gordon with same projection) For any α ∈ N 4 there exists a 1-dimensional family of hyperelliptic covers π : (Γ, p) → (X, q), equipped with a pair of distinct Weierstrass points {p o , p 1 } ∈ Γ, such that:

(1) π(p o ) = π(p 1 ) = ω o and (π, p o , p 1 ) solves the sine-Gordon case;

(2) Γ has arithmetic genus g := α (1) + 2 and deg(π) = α (2) + α (1) + 3.

( 4 )

 4 The only irreducible curve linearly equivalent to a multiple of C o is C o itself cf. [35]3.2.(1) .

( 2 )

 2 ), (2) & (3) or 2.10.(1), (2) & (3); there is a morphism ι: Γ → S such that π = π S • ι , ι • τ Γ = τ • ι and ι * (C o ) = p ′ + p ′′ .In the latter case, (π, p ′ , p ′′ ) solves, either the NL Schrödinger & 1D Toda case, if τ Γ (p ′ ) = p ′′ , or the sine-Gordon case, if p ′ and p ′′ are Weierstrass points. Proposition 3.10.

6 .

 6 On hyperelliptic d-osculating covers of arbitrary high genus 6.1. -Let C ⊥ o denote the strict transform of C o in S ⊥ , C o := ϕ(C ⊥ o

( 6 ) 3 i=0

 63 Γ intersects C o (at most) at p o := C o ∩ s o (i.e.: Γ ∩ C o ⊂ C o ∩ s o ), with multiplicity 1 2 (2d -1 -ρ). In particular, if ρ = 2d -1, Γ and C o are disjoint curves. Definition 6.2. For any (n, d, ρ, γ) ∈ N 7 satisfying the above restrictions, we let Λ(n, d, ρ, γ) denote the unique element of P ic( S) such that ϕ * Λ(n, d, ρ, γ) is linearly equivalent to e * nC o + (2d -1)S o -ρs o ⊥ -γ i r i ⊥ , and M H X (n, d, ρ, 1, γ) denote the moduli space of degree-n hyperelliptic d-osculating covers of type γ, ramification index ρ at their marked point, and birational to their canonical images in S ⊥ .

Proposition 6 . 4 .

 64 ([33]3.4) Any curve Γ ⊂ S intersecting C o at a unique smooth point p ∈ Γ is irreducible. Proposition 6.5. Let Γ ⊥ ⊂ S ⊥ be a curve with no irreducible component in {r ⊥ i , i = 0, .., 3}, and intersecting C ⊥ o (at most) at a unique smooth point p ⊥ ∈ Γ ⊥ . Then Γ ⊥ is an irreducible curve.

  and Λ • K = -1 as well. It follows that h o S, O S (Λ) ≥ χ O S (Λ) = 1, hence there exists an effective divisor Γ ∈ Λ . Such a divisor is known to be unique and irreducible ([35]6.2.). Corollary 6.7. ([35]) Let α ∈ N 4 be such that α o +1 ≡ α j (mod.2), Γ α the corresponding exceptional curve (see 6.6.), and Γ ⊥ α := ϕ * ( Γ α ) its inverse image in S ⊥ , marked at its Weierstrass point p α := Γ ⊥ α ∩ s ⊥ o . Then, (Γ ⊥ α , p α ) gives rise to KdV solutions, L-periodic in x = t 1 (the first KdV flow).

  d, 1, γ) and have p ⊥

	unique common point;	o := C ⊥ o ∩ s ⊥ o as their
	c) the curve F ⊥ o is smooth at p ⊥ o , while any other F ⊥ j has multiplicity 1 < 2j+1 < 2d
	at p ⊥ o . In particular, they span a (d -2)-subspace of ϕ * Λ(n, d, 1, γ) , having a generic element smooth and transverse to s ⊥ o at p ⊥ o ;
	d) the curve G ⊥ has multiplicity 2d at p ⊥ o , and no common irreducible component with any F ⊥

j ( ∀j = 0, . . . , d -2)

Hence, if π is not ramified at p, we must have m = 1, as well as:

(5) (2g+1) 2 ≤ 8(2d -1)(n -1)+ 9.

Proof. (1) -For any i = 0, .., 3, the fiber of π S ⊥ := π S • e : S ⊥ → X over the half-period ω i , decomposes as s ⊥ i + r ⊥ i + S ⊥ i , where S ⊥ i is a τ ⊥ -invariant divisor and s ⊥ i is disjoint with ι ⊥ * (Γ), if i = 0, while ι ⊥ * (s ⊥ i ) = ρ p, by 5.4. [START_REF] Akhmetshin | Elliptic families of solutions of the Kadomtsev-Petviashvili equation, and the field analog of the elliptic Calogero-Moser system[END_REF]. Hence, the divisor R i := ι ⊥ * (r ⊥ i ) of Γ is linearly equivalent to R i ≡ π -1 (ω i ) -(n -γ i ) p (and also 2R i ≡ 2γ i p ). Recalling at last, that 3 j=1 ω j ≡ 3 ω o , and taking inverse image by π, we finally obtain that 3 i=0 R i ≡ γ (1) p . In other words, there exists a well defined meromorphic function, (i.e.: a morphism), from Γ to P 1 , with a pole of (odd!) degree γ (1) at the Weierstrass point p. The latter can only happen (by the Riemann-Roch Theorem) if 2g+1 ≤ γ (1) , as asserted.

(2) -According to 5.4.( 4), m divides ρ. Hence, ρ = 1 implies m = 1.

(3) -The curve ι ⊥ (Γ) is τ ⊥ -invariant and linearly equivalent 5.4.( 4)-( 6) to:

Recall also that ϕ * ( K), the inverse image by ϕ of the canonical divisor of S, is linearly equivalent to ϕ * ( K) ∼ e * (-2C 0 ). Applying the projection formula for ϕ : S ⊥ → S, to the divisor ι ⊥ (Γ), we calculate g( Γ), the arithmetic genus of Γ := ϕ ι ⊥ (Γ) ⊂ S : 2) , implying γ (2) ≤ (2d -1)(2n -2m)+ 4m 2 -ρ 2 , as claimed.

(4) & (5) -We start remarking that, for any j = 1, 2, 3, (γ o -γ j ) is a non-zero multiple of m. Hence, i<j (γ i -γ j ) 2 ≥ 3m 2 , and replacing in 5.5.(1) we get:

Taking into account 5.5.(3), we obtain the inequality 5.5.( 4), as well as 5.5.( 5), which corresponds to the particular case ρ = m = 1.

Lemma 5.6. Let π : (Γ, p) → (X, q) be an arbitrary degree-n hyperelliptic cover, equipped with two points p ′ = p ′′ ∈ Γ such that the (divisor) sum p ′ + p ′′ is τ Γ -invariant. Assume the data (π, p ′ , p ′′ ) solves the NL Schrödinger & 1D Toda or the sine-Gordon case, i.e.:

). We let again ι : Γ → S denote the corresponding morphism ( 3.10.), Γ ⊥ the image of its lift ι ⊥ : Γ → S ⊥ , and γ = (γ i ) ∈ N 4 its type, obtained by intersecting Γ ⊥ with the curves {r ⊥ i }. Then:

(1) ι(Γ) is birational to Γ and numerically equivalent to nC o + 2S o ;

(2) ι(Γ) intersects C o at {ι(p ′ ), ι(p ′′ )}, with multiplicity 1 at each point, if π(p ′ ) = π(p ′′ ), and with multiplicity

(5) if π(p ′ ) = π(p ′′ ) are two half-periods of (X, q), say {ω k , ω j }, for some k = j,

Analogously to what we proved for the d-th KdV case (5.5.), we obtain the following relations between the degree and arithmetic genus of the other cases.

Theorem 5.7. (NL Schrödinger & 1D Toda case) Let π : (Γ, p) → (X, q) be an arbitrary degree-n hyperelliptic cover of arithmetic genus g, equipped with two points p + = p -∈ Γ exchanged by the hyperelliptic involution τ Γ . Assume (π, p + , p -) solves the NL Schrödinger & 1D Toda case and let γ ∈ N 4 denote its type ( 5.6.). Then, γ i ≡ n(mod.2), for any i, and :

(1) 2g + 2 ≤ γ (1) ;

(2) π(p + ) = π(p -) implies γ (2) ≤ 4n, as well as (g + 1) 2 ≤ 4n;

(3) π(p + ) = π(p -) and n ≡ 0(mod.2) imply γ (2) ≤ 4n -4 and (g + 1) 2 ≤ 4n -4;

(4) π(p + ) = π(p -) and n ≡ 1(mod.2) imply γ (2) ≤ 4n -8 and (g + 1) 2 ≤ 4n -8. Theorem 5.8. (sine-Gordon case) Let π : (Γ, p) → (X, q) be an arbitrary degree-n hyperelliptic cover of arithmetic genus g, equipped with two Weierstrass points p 1 , p 2 ∈ Γ. Assume (π, p 1 , p 2 ) solves the sine-Gordon case and let γ ∈ N 4 denote its type ( 5.6.). Then:

(1) 2g ≤ γ (1) ;

(2) π(p 1 ) = π(p 2 ) implies γ (2) ≤ 4n, as well as g 2 ≤ 4n;

(3) π(p 1 ) = π(p 2 ) and n ≡ 0(mod.2) imply γ (2) ≤ 4n -4 and g 2 ≤ 4n -4;

(4) π(p + ) = π(p -) and n ≡ 1(mod.2) imply γ (2) ≤ 4n -8 and g 2 ≤ 4n -8.

α (1) ≡ 1(mod 2) and a ∈ {ω i }, there exists a hyperelliptic cover π : (Γ, p) → (X, q), equipped with two non-Weierstrass points p + , p -∈ Γ such that:

(1) π(p + ) = a, p + = τ Γ (p -) and (π, p + , p -) solves the NL Schrödinger case;

(2) Γ has arithmetic genus g := α (1) -1;

(3) deg(π) = α (2) if a / ∈ {ω i }, and deg(π) = α (2) + 1 otherwise.

For a better presentation of our sine-Gordon's results, we must also take in account the projections of (p o , p 1 ), the pair of Weierstrass points (see 2.10.). They either project onto the same point, which can be chosen equal to π(p o ) = π(p 1 ) = ω o , or their projections differ by a non-zero half-period, say π(p o ) = ω o and π(p 1 ) = ω 1 . In all four cases we find 1-dimensional families of solutions. Additional properties, such as the existence of a fixed point free involution or a real structure can also be found. For example, if (X, q) has a real structure, we can extract from the first three sine-Gordon cases a real 1-dimensional family having a real structure fixing the Weierstrass points. Theorem 6.15. (even degree sine-Gordon with distinct projections) Pick any α ∈ N 4 satisfying α 2 + α 3 ≡ 1(mod 2). Then, there exists a 1-dimensional family of hyperelliptic covers π : (Γ, p) → (X, q), equipped with a pair of distinct Weierstrass points {p o , p 1 } ∈ Γ, such that:

(1) π(p j ) = ω j , for j = 0, 1 and (π, p o , p 1 ) solves the sine-Gordon case;

(2) Γ has arithmetic genus g := α (1) + 1 and deg(π) = α (2) + α o + α 1 + 1. Theorem 6.16. (odd degree sine-Gordon with distinct projections) Pick any α ∈ N 4 satisfying α o + α 1 ≡ 0(mod 2). Then, there exists a 1-dimensional family of hyperelliptic covers π : (Γ, p) → (X, q), equipped with a pair of distinct Weierstrass points {p o , p 1 } ∈ Γ, such that:

(1) π(p j ) = ω j , for j = 0, 1 and (π, p o , p 1 ) solves the sine-Gordon case;

(2) Γ has arithmetic genus g := α (1) + 1 and deg(π) = α (2) + α 2 + α 3 + 1. Theorem 6.17. (even degree sine-Gordon with same projection) Fix j o ∈ {1, 2, 3} and pick any α ∈ N 4 satisfying α jo +1 ≡ α i (mod 2) for any i = j o . Then, there exists a 1-dimensional family of hyperelliptic covers π : (Γ, p) → (X, q), equipped with a pair of distinct Weierstrass points {p o , p 1 } ∈ Γ, such that:

(1) π(p o ) = π(p 1 ) = ω o and (π, p o , p 1 ) solves the sine-Gordon case;

(2) Γ has arithmetic genus g := α (1) and deg(π) = α (2) + 1.