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We generalize, on one hand, some results known for composition operators on Hardy spaces to the case of Hardy-Orlicz spaces H Ψ : construction of a "slow" Blaschke product giving a non-compact composition operator on H Ψ ; construction of a surjective symbol whose composition operator is compact on H Ψ and, moreover, is in all the Schatten classes S p (H 2 ), p > 0. On the other hand, we revisit the classical case of composition operators on H 2 , giving first a new, and simplier, characterization of closed range composition operators, and then showing directly the equivalence of the two characterizations of membership in the Schatten classes of Luecking and Luecking and Zhu.

Introduction

The study of composition operators on Hardy spaces is now a classical subject (see [START_REF] Shapiro | Composition Operators and Classical Function Theory, Universitext[END_REF], [START_REF] Cowen | Composition operators on spaces of analytic functions[END_REF] for example). In [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF] (see also [START_REF] Lefèvre | Opérateurs de composition sur les espaces de Hardy-Orlicz[END_REF]), we considered a more general setting and studied composition operators on Hardy-Orlicz spaces; we gave there a characterization of their compactness in terms of the Carleson function of their symbol (and in terms of the Nevanlinna counting function in [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF]). This work was continued in [START_REF] Lefèvre | Compact composition operators on H 2 and Hardy-Orlicz spaces[END_REF]: we compared the compactness on Hardy spaces versus the compactness on Hardy-Orlicz spaces. For instance, we showed that there is, for every 1 ≤ p < ∞, an Orlicz function Ψ such that H p+ε ⊆ H Ψ ⊆ H p for every ε > 0, and a composition operator C ϕ such that C ϕ is compact on H p and H p+ε , but which is not compact on H Ψ .

We carry on this study in the present work. In a first part (Section 3 and Section 4), we shall improve, and extend to the Hardy-Orlicz case, results known for Hardy spaces; in a second part (Section 5 and Section 6), we shall give new lights on some results concerning Hardy spaces. More precisely, the content of this paper is as following.

B. McCluer and J. Shapiro ([14], Theorem 3.10; see also [START_REF] Shapiro | Composition Operators and Classical Function Theory, Universitext[END_REF], § 3.2) proved that, when their symbol ϕ is finitely-valent, compactness of composition operators C ϕ on the Hardy space H 2 can be characterized by the behaviour of the modulus of ϕ near the frontier of D: compactness is equivalent to 1 -|z| = 0 1 -|ϕ(z)| as |z| → 1, but that is not equivalent in general ( [START_REF] Mccluer | Angular derivatives and compact composition operators on the Hardy and Bergman spaces[END_REF], Example 3.8; see also [START_REF] Shapiro | Composition Operators and Classical Function Theory, Universitext[END_REF], § 10.2). In [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF], Theorem 5.3, we gave such a characterization for composition operators, with finitely-valent symbol, on Hardy-Orlicz spaces. In Section 3, we construct a "slow" Blaschke product (generalizing [START_REF] Shapiro | Composition Operators and Classical Function Theory, Universitext[END_REF], § 10.2 and [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF], Proposition 5.5) showing that this condition is not sufficient in general.

In Section 4, we construct a compact composition operator C ϕ : H Ψ → H Ψ with surjective symbol ϕ and such that C ϕ : H 2 → H 2 is in all the Schatten classes S p (H 2 ), p > 0. This generalizes and improves a result of B. McCluer and J. Shapiro ([14], Example 3.12; see also the survey [START_REF] Queffélec | Carleson measures and composition operators[END_REF], § 2).

In Section 5, we give a characterization of composition operators C ϕ : H p → H p , 1 ≤ p < ∞, with a closed range, simpler than the former ones (see [START_REF] Cima | On some properties of composition operators[END_REF] and [START_REF] Zorboska | Composition operators with closed range[END_REF]).

Finally, based on the main result of [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF], we show directly, in Section 6, the equivalence of Luecking's and Luecking-Zhu's criteria ( [START_REF] Luecking | Trace ideal criteria for Toeplitz operators[END_REF], [START_REF] Luecking | Composition operators belonging to the Schatten ideals[END_REF]) for the membership of C ϕ : H 2 → H 2 in the Schatten classes.

Acknowledgement. Part of this work was made during the fourth-named author visited the University of Lille 1 and the University of Artois (Lens) in June 2009. This fourth-named author is partially supported by a Spanish research project MTM2006-05622.

Notation

The open unit disk is denoted by D = {z ∈ C ; |z| < 1} and its boundary, the unit circle, by T = {z ∈ C ; |z| = 1}. The normalized Lebesgue measure dt/2π on T is denoted by m. The normalized area measure dx dy/π is denoted by A.

The Hardy space H 1 is the space of analytic functions f :

D → C such that sup r<1 2π 0 |f (re iθ )| dθ < ∞. Every f ∈ H 1 has almost everywhere boundary values on T, which are denoted by f * . An Orlicz function is a convex nondecreasing function Ψ : [0, ∞) → [0, ∞) such that Ψ(0) = 0 and Ψ(∞) = ∞.
If µ is a positive measure on some measurable space S, the Orlicz space L Ψ (µ) is the set of all (classes of) measurable functions f : S → C such that S Ψ(|f |/C) dµ < ∞ for some C > 0; the norm f Ψ is defined as the infimum of the positive numbers C for which

S Ψ(|f |/C) dµ ≤ 1.
The Hardy-Orlicz space H Ψ is the linear subspace of f ∈ H 1 such that f * ∈ L Ψ (m) (see [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF]).

Every analytic self-map ϕ : D → D defines a bounded composition operator [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF]).

C ϕ : f ∈ H Ψ → f • ϕ ∈ H Ψ (see
For every ξ ∈ T and 0 < h < 1, the Carleson window is the set W (ξ, h) = {z ∈ D ; |z| ≥ 1-h and | arg(z ξ| ≤ h}. The Carleson function ρ ϕ of the analytic self-map ϕ : D → D is defined, for 0 < h < 1, by:

ρ ϕ (h) = sup ξ∈T m {e iθ ∈ T ; ϕ * (e iθ ) ∈ W (ξ, h)} . Alternatively, ρ ϕ (h) = sup ξ∈T m ϕ [W (ξ, h)],
where m ϕ is the pull-back measure of m by ϕ. We shall also use, instead of W (ξ, h), the set S(ξ, h) = {z ∈ D ; |z -ξ| ≤ h}, which has an equivalent size.

The Nevanlinna counting function N ϕ is defined, for w ∈ ϕ(D) \ {ϕ(0)}, by

N ϕ (w) = ϕ(z)=w log 1 |z| ,
each term log 1 |z| being repeated according to the multiplicity of z, and N ϕ (w) = 0 for the other w ∈ D.

Slow Blaschke products

B. McCluer and J. Shapiro ([14], Theorem 3.10; see also [START_REF] Shapiro | Composition Operators and Classical Function Theory, Universitext[END_REF], § 3.2) proved that, when ϕ is finitely-valent (meaning that, for some s ≥ 1, the equation ϕ(z) = w has at most s solutions), the composition operators C ϕ : H p → H p is compact, 1 ≤ p < ∞, if and only if ϕ has an angular derivative at no point of T; that means that:

(3.1) lim |z|→1 1 -|z| 1 -|ϕ(z)| = 0 .
In [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF], Theorem 5.3, we generalized this result to Hardy-Orlicz spaces and proved that if ϕ is finitely-valent, the composition operator C ϕ : H Ψ → : H Ψ is compact if and only if:

(3.2) lim |z|→1 Ψ -1 1 1 -|ϕ(z)| Ψ -1 1 1 -|z| = 0 .
Without the assumption that ϕ is finitely-valent, condition (3.2) is no longer sufficient to ensure the compactness of C ϕ : H Ψ → H Ψ . Indeed, we are going to construct a Blaschke product satisfying (3.2), but whose associated composition operator is of course not compact on H Ψ , as this is the case for every inner function. A Blaschke product satisfying (3.1) is constructed in [START_REF] Shapiro | Composition Operators and Classical Function Theory, Universitext[END_REF], § 10.2; that construction uses Frostman's Theorem. Our construction, which is more general, is entirely elementary. Theorem 3.1 Let δ : (0, 1) → (0, 1/2] be any function such that lim t→0 δ(t) = 0.

Then, there exists a Blaschke product B such that:

(3.3) 1 -|B(z)| ≥ δ(1 -|z|),
for all z ∈ D.

Corollary 3.2 For every Orlicz function Ψ there exists a Blaschke product B which satisfies:

lim |z|→1 Ψ -1 1 1 -|B(z)| Ψ -1 1 1 -|z| = 0 . though the composition operator C B : H Ψ → H Ψ is not compact.
Proof. C B is not compact since every compact composition operator should satisfy |ϕ * | < 1 a.e. (see [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF], Lemma 4.8). It suffices then to chose δ(t) = 1/Ψ Ψ -1 (1/t) , which satisfies the hypothesis of Theorem 3.1. Moreover:

Ψ -1 1/δ(t) Ψ -1 (1/t) = 1 Ψ -1 (1/t) -→ t→0 0 ,
and condition (3.3) gives the result.

Proof of Theorem 3.1. We shall essentially construct our Blaschke product B as an infinite product of finite Blaschke products

n B n ,
where each finite Blaschke product B n has p n zeros equidistributed in the circumference of radius r n . That is, we will have, writing θ k = 2πk/p n and z k = r n e iθ k , for k = 1, 2, . . . , p n :

(3.4) B n (z) = pn k=1 |z k | z k z k -z 1 -z k z = pn k=1 r n -e -iθ k z 1 -r n e -iθ k z •
We shall need the following estimate for the finite Blaschke product in (3.4).

Lemma 3.3 Let p ∈ N, and 0 < r < 1. Consider the finite Blaschke product

(3.5) G(z) = p k=1 r -e -iθ k z 1 -re -iθ k z ,
where θ k = 2kπ p , for k = 1, 2, . . . , p. (a) Then, for every z ∈ D with |z| = r,

(3.6) |G(z)| ≤ 2r p 1 + r 2p = 1 - (1 -r p ) 2 1 + r 2p • (b) If besides we have p h ≤ 1/2
, where h = 1r, we also have, for every z ∈ D with |z| = r,

(3.7) |G(z)| ≤ 1 - (p h) 2 2e •
Let us continue the proof of the theorem. Define χ : (0, 1) → (0, 1] by:

(3.8) χ(x) = sup t≤x max{2δ(t), √ t} .
Then χ is non-decreasing, lim x→0 χ(x) = 0 and lim x→1 χ(x) = 1. We can find a decreasing sequence (h n ) n≥0 of point h n ∈ (0, 1), such that χ(h n ) ≤ 2 -n . This sequence converges to 0; in fact, (3.8), and hence:

√ h n ≤ χ(h n ) ≤ 2 -n , by
(3.9) h n ≤ 2 -2n .
We now define, for every n ∈ N, a positive integer p n , by:

(3.10)

p n = min{p ∈ N ; p 2 h 2 n 2e > 2 -n }.
We have

p n > 1 because h 2 n /2e < h 2 n ≤ 2 -4n
. So, for every n, we have 4(p n -1) 2 ≥ p 2 n , and then:

(3.11) 4 • 2 -n ≥ 4(p n -1) 2 h 2 n 2e ≥ p 2 n h 2 n 2e •
This yields, for n ≥ 7, that (p n h n ) 2 ≤ 8e 2 -n ≤ 1/4. Therefore p n h n ≤ 1/2, and we can use the estimate in part (b) of Lemma 3.3. Now, for n ≥ 7, let B n be the finite Blaschke product defined by (3.4), where r n = 1h n . Using (b) in Lemma 3.3, the Maximum Modulus Principle and the definition of p n in (3.10), we have:

(3.12) |B n (z)| ≤ 1 - p 2 n h 2 n 2e < 1 -2 -n , for |z| ≤ r n .
Consider then the Blaschke product D defined by:

(3.13) D(z) = ∞ n=7 B n (z).
This product is convergent since, by (3.11), we have:

p n (1 -r n ) = p n h n ≤ √ 8e 2 -n < +∞ .
Finally, take N ∈ N big enough to have r N 6 < 1/2, and define:

(3.14) B(z) = z N D(z).
Thus B is a Blaschke product, and, if |z| ≤ r 6 , we have, since δ(t) ≤ 1/2:

(3.15) |B(z)| ≤ |z N | ≤ r N 6 < 1/2 ≤ 1 -δ(1 -|z|). If 1 > |z| > r 6 , there exists k ≥ 7 such that r k ≥ |z| > r k-1 .
Therefore, thanks to (3.12), (3.16)

|B(z)| ≤ |D(z)| ≤ |B k (z)| ≤ 1 -2 -k .
On the other hand

r k ≥ |z| > r k-1 implies h k ≤ 1 -|z| < h k-1
, and so:

(3.17) δ(1 -|z|) ≤ 1 2 χ(1 -|z|) ≤ 1 2 χ(h k-1 ) ≤ 2 -k .
Combining (3.16) and (3.17 Proof of Lemma 3.3. It is obvious that, for all a, z ∈ C,

p k=1 (z -ae iθ k ) = z p -a p .
Using this we have:

(3.18) G(z) = p k=1 r -e -iθ k z 1 -re -iθ k z = p k=1 z -re iθ k rz -e iθ k = z p -r p (rz) p -1 • Now, if |z| = r, we can write z p = r p u, for some u with |u| = 1. Then |G(z)| = |T (u)|,
where T is the Moebius transformation

T (u) = r p (u -1) r 2p u -1 •
This transformation T maps the unit circle ∂D onto a circumference C. As T maps the extended real line R ∞ to itself, and ∂D is orthogonal to R ∞ at the intersection points 1 and -1, C is the circumference orthogonal to R ∞ crossing through the points T (1) = 0 and T (-1) = α. It is easy to see that |w| ≤ |α|, for every w ∈ C; consequently:

|G(z)| ≤ sup u∈∂D |T (u)| = |T (-1)| = 2r p 1 + r 2p •
This finishes the proof of the statement (a).

To prove part (b), observe that, 1 + r 2p ≤ 2, and so, for |z| = r,

(3.19) |G(z)| ≤ 1 - (1 -r p ) 2 1 + r 2p ≤ 1 - (1 -r p ) 2 2 •
Remember that r = 1h, so r ≤ e -h , and

r p ≤ e -ph . Thus 1 -r p ≥ 1 -e -ph . Now, if x ∈ [0, 1/2],
we have, by the Mean Value theorem:

1 -e -x ≥ x √ e •
Since p h ≤ 1/2, we can apply this last estimate to (3.19) to get, as promised,

|G(z)| ≤ 1 - (1 -e -ph ) 2 2 ≤ 1 - p 2 h 2 2e ,
and ending the proof of Lemma 3.3.

Remark.

The key point in the proof of Theorem 3.1 is the inequality (3.6) in Lemma 3.3. This inequality may be viewed as a consequence of the strong triangle inequality (applied to a = z p , b = r p and c = 0):

(3.20) d(a, b) ≤ d(a, c) + d(c, b) 1 + d(a, c) d(c, b) for the pseudo-hyperbolic distance d(u, v) = |u-v| |1-ūv| on D.
Let us recall a proof for the convenience of the reader: by conformal invariance, we may assume that c = 0; then:

1 -[d(a, b)] 2 = (1 -|a| 2 )(1 -|b| 2 ) |1 -āb| 2 ≥ (1 -|a| 2 )(1 -|b| 2 ) (1 + |a| |b|) 2 = 1 -[d(|a|, -|b|)] 2 ,
so that: 

d(a, b) ≤ d(|a|, -|b|) = |a| + |b| 1 + |a| |b| , proving (3.20) 

A compact composition operator with a surjective symbol

A well-known result of J. H. Schwartz ([17], Theorem 2.8) asserts that the composition operator C ϕ : H ∞ → H ∞ is compact if and only if ϕ ∞ < 1. In particular, the compactness of C ϕ : H ∞ → H ∞ prevents the surjectivity of ϕ. It may be therefore to be expected that, the bigger Ψ, the more difficult it will be to obtain both the compactness of C ϕ : H Ψ → H Ψ and the surjectivity of ϕ. Nevertheless, this is possible, as says the following theorem, and the case H ∞ appears really as a singular case (corresponding to an "Orlicz function" which is discontinuous and can take the value infinity). Theorem 4.1 For every Orlicz function Ψ, there exists a symbol ϕ : D → D which is 4-valent and surjective and such that C ϕ : H Ψ → H Ψ is compact. Moreover, ϕ can be taken so as

C ϕ : H 2 → H 2 is in all the Schatten classes S p (H 2 ), p > 0.
In the case of H 2 (Ψ(x) = x 2 ), B. McCluer and J. Shapiro ([14], Example 3.12) gave an example based on the Riemann mapping theorem and on the fact that, for a finitely valent symbol ϕ, we have the equivalence:

(4.1) C ϕ : H 2 → H 2 compact ⇐⇒ lim |z| < → 1 1 -|ϕ(z)| 1 -|z| = ∞.
A specific example is as follows. Take ) is tested through the use of the Julia-Carathéodory theorem (see [START_REF] Queffélec | Carleson measures and composition operators[END_REF] for details). To get a fully surjective mapping ϕ 1 , just compose ϕ with the square of a Blaschke product:

ϕ 1 (z) = B • ϕ, with B(z) = z -α 1 -αz 2 , α ∈ D * = D \ {0} (note that B(0) = B(2α/1 + |α| 2 ). Since C ϕ1 = C ϕ • C B ,
we see that C ϕ1 is compact as well and we are done.

Here, we can no longer rely on the Julia-Carathéodory theorem. But we shall use the following necessary and sufficient condition, in terms of the maximal Carleson function ρ ϕ , which is valid for any symbol, finitely-valent or not (see [START_REF] Lefèvre | Composition operators on Hardy-Orlicz spaces[END_REF], Theorem 4.18 -or [START_REF] Lefèvre | Opérateurs de composition sur les espaces de Hardy-Orlicz[END_REF], Théorème 4.2, where a different, but equivalent, formulation is given):

(4.3) C ϕ : H Ψ → H Ψ compact ⇐⇒ lim h > → 0 Ψ -1 (1/h) Ψ -1 1/ρ ϕ (h) = 0 .
For the sequel, we shall set:

(4.4) ∆(h) = Ψ -1 (1/h) Ψ -1 1/ρ ϕ (h)
• Our strategy will be to elaborate on the previous example to produce a (nearly) surjective ϕ such that ρ ϕ (h) is very small (depending on Ψ) for small h. The tool will be the notion of harmonic measure for certain open sets of the extended plane Ĉ = C ∪ {∞}, called hyperbolic (see [START_REF] Conway | Functions of One Complex Variable II[END_REF], Definition 19.9.3); for example, every conformal image of D is hyperbolic (see [START_REF] Conway | Functions of One Complex Variable II[END_REF], Proposition 19.9.2 (d) and Theorem 19.9.7). If G is a hyperbolic domain and a ∈ G, the harmonic measure of G at a is the probability measure ω G (a, . ) supported by ∂G (here, and throughout the rest of this section, boundaries and closures will be taken in Ĉ) such that:

u(a) = ∂G u(z) dω G (a, z)
for each bounded and continuous function u on G, which is harmonic in G (see [START_REF] Conway | Functions of One Complex Variable II[END_REF], Definition 21.1.3). The harmonic measure at a of a Borel set A ⊆ ∂G will be denoted by ω G (a, A). Clearly, ω D (0, . ) = m, the Haar measure (i.e. normalized Lebesgue measure) of ∂D. R. Nevanlinna (see [START_REF] Conway | Functions of One Complex Variable II[END_REF], Proposition 21.1.6) showed that harmonic measures share a conformal invariance property. Namely, assume that G is a simply connected domain, in which the Dirichlet problem can be solved (a Dirichlet domain), and τ : D → G is a continuous function which maps conformally D onto G; then τ maps ∂D onto ∂G, and, if τ (0) = a:

(4.5) ω G (a, A) = m τ -1 (A)
for every Borel set A ⊆ ∂G. This explains why harmonic measures enter the matter when we consider composition operators C ϕ : such an operator induces a map H Ψ → L Ψ (m ϕ ), where m ϕ = ϕ * (m) appears as an image measure of m, as it happens for the harmonic measure of G at a in (4.5).

A useful alternative way of defining the harmonic measure, due to S. Kakutani, and completed by J. Doob (see [START_REF] Stroock | Probability Theory, An Analytic View[END_REF], page 454, and [START_REF] Garnett | Harmonic measure[END_REF], Appendix F, page 477) is the following: Let (B t ) t>0 be the 2-dimensional Brownian motion starting at a ∈ G (i.e. B 0 = a), and τ be the stopping time defined by:

(4.6) τ = inf{t > 0 ; B t / ∈ G} ;
we have:

(4.7) ω G (a, A) = P a (B τ ∈ A),
i.e. the harmonic measure of A at a is the probability that the Brownian motion starting at a exits from G through the Borel set A ⊆ ∂G. The following lemma will be basic for the construction of our example. We shall provide two proofs, the second one being more illuminating. 

G 0 ⊆ G 1 and ∂G 0 ⊆ ∂G 1 ∪ H.
Then, for every a ∈ G 0 , we have the following inequality:

(4.8) ω G1 (a, ∂G 1 \ ∂G 0 ) ≤ ω G0 (a, H).
Proof 1. From [START_REF] Conway | Functions of One Complex Variable II[END_REF], Corollary 21.1.14, with ∆ = ∂G 0 ∩∂G 1 , one has ω G0 (a, ∆) ≤ ω G1 (a, ∆). But ∂G 1 \ ∆ = ∂G 1 \ ∂G 0 , and hence, since harmonic measures are probability measures,

ω G1 (a, ∂G 1 \ ∂G 0 ) = ω G1 (a, ∂G 1 \ ∆) = 1 -ω G1 (a, ∆) ≤ 1 -ω G0 (a, ∆);
we get the result since ∂G 0 = H ∪ ∆, which implies 1 ≤ ω G0 (a, H) + ω G0 (∆).

Proof 2. Let us define (4.9)

τ 0 = inf{t > 0 ; B t / ∈ G 0 }, τ 1 = inf{t > 0 ; B t / ∈ G 1 } and (4.10) E = {B τ1 ∈ ∂G 1 \ ∂G 0 }, F = {B τ0 ∈ H}.
Inequality (4.8) amounts to proving that P a (E) ≤ P a (F ), which will follow from the inclusion E ⊆ F . Suppose that the event E holds. Since G 0 ⊆ G 1 , one has τ 0 ≤ τ 1 . The Brownian path (B s ) 0≤s≤τ1 being continuous with

B 0 = a ∈ G 0 , one has B τ0 ∈ ∂G 0 ⊆ ∂G 1 ∪ H. If we had B τ0 ∈ ∂G 1 , we should have B τ0 / ∈ G 1 , since G 1 is
open, and hence τ 0 = τ 1 , since we know that τ 0 ≤ τ 1 . But then B τ1 = B τ0 ∈ ∂G 0 , contrary to the definition of E. Therefore, B τ0 ∈ H and F holds.

We also shall need the following result (see [START_REF] Conway | Functions of One Complex Variable II[END_REF], Proposition 21.1.17). For a positive integer n, set:

(4.11) b n = 1 4nπ
, and let ε n > 0 such that:

(4.12) Ψ -1 (2/b n+1 ) Ψ -1 (1/ε n ) ≤ 1 n •
We now modify the domain R, including "barriers" in it (not in the sense of potential theory, nor of Perron!) in the following way.

Let, for every n ≥ 1, M n be the intersection point of the horizontal line y = 4πn and of the hyperbola y = (1/x) + 2π, that is M n = 1 4πn-2π + 4πni. Define inductively closed sets P + n and P - n , which are like small points of swords (two segments and a piece of hyperbola), in the following way:

• The lower part of P + n and P - n are horizontal segments of altitude 4nπ. • Those two horizontal segments are separated by a small open horizontal segment H n whose middle is M n .

• The upper part of P + n is a slant segment whose upper extremity c + n lies on the hyperbola y = 1/x.

• The upper part of P - n is a slant segment whose upper extremity c - n lies on the hyperbola y = (1/x) + 4π.

• The curvilinear part of P + n is supported by the hyperbola y = 1/x. • The curvilinear part of P - n is supported by the hyperbola y = (1/x) + 4π.

• One has 4(n + 1)π -Im c ± n > 2π.
The size of the small horizontal holes will be determined inductively in the following way. Fix once and for all a ∈ R such that Im a < 4π. Suppose that H 1 , H 2 , . . . , H n-1 have already been determined. Set:

(4.13) Ω n = z ∈ R \ j<n (P + j ∪ P - j ) ; Im z < 4nπ .
We can adjust H n so small that:

(4.14) ω Ωn (a, H n ) ≤ ε n .
Indeed, Ω n is bounded above by the horizontal segment

[b n + 4inπ, b n-1 + 4inπ],
where the point

M n lies. If H n = [M n -δ, M n + δ],
we see that H n decreases to the singleton {M n } as δ decreases to zero. Therefore, by Proposition 4.3, we can adjust δ so as to realize (4.14). We now define our modified open set Ω by the formula

(4.15) Ω = R \ n≥1 (P + n ∪ P - n ) = n≥1 Ω n .
It is useful to observe that:

(4.16) inf w∈∂Ωn Re w = b n .
This is obvious by the way we defined the upper part of ∂Ω n . Now, we can easily finish the proof. Fix h ≤ b 1 /2 and let n be the integer such that:

(4.17) b n+1 < 2h ≤ b n .
Let g : D → Ω be a conformal mapping such that g(0) = a. Since ∂ ∞ Ω is connected, Caratheodory's Theorem (see [START_REF] Pommerenke | Boundary behaviour of conformal maps[END_REF]) ensures that g can be continuously extended from D onto Ω. More explicitly, using the Moebius transformation T (z) = 1/z, we see that there exists an automorphism of the extended complex plane such that Ω is sended onto a compact subset of C; so, we can apply to Ω many results stated for bounded domains. For instance, the boundary of Ω is a continuous path in the extended plane; so, by [START_REF] Conway | Functions of One Complex Variable II[END_REF], Theorem 14.5.5, g can be extended to a continuous function (for the extended plane topology) g : D → G.

In particular, g has boundary values g * . We define ϕ = e -g . As in the proof of B. McCluer and J. Shapiro ([14]), we have that ϕ is 2valent (see the remark made at the beginnig of this proof), and we still have ϕ(D) = D * , since, in the process for constructing Ω from R, for every point of D * , at least one of the preimages by e -z in R has not been removed. Observe that, in particular, we did not remove any point in the hyperbola y = (1/x)+2π, thanks to the choice of M n .

Moreover, Ω is a Dirichlet domain (because each component of ∂Ω has more than one point: see the comment after Definition 19.7.1 in [START_REF] Conway | Functions of One Complex Variable II[END_REF]), so we can use the conformal invariance. Then by (4.5), (4.14), (4.16) and by the hole principle, we see that, if A = {Re g * (e it ) < 2h}:

ρ ϕ (h) ≤ m ϕ ({|z| > 1 -h}) = m({e -Re g * (e it ) > 1 -h}) (4.18) = m({Re g * (e it ) < log(1/1 -h)}) ≤ m({Re g * (e it ) < 2h}) = ω D (0, A) = ω g(D) g(0), g(A) = ω Ω (a, {Re w < 2h}) ≤ ω Ω (a, {Re w ≤ b n }) ≤ ω Ω (a, ∂Ω \ ∂Ω n ) ≤ ω Ωn (a, H n ) ≤ ε n .
It remains to observe that:

∆(h) = Ψ -1 (1/h) Ψ -1 (1/ρ ϕ (h)) ≤ Ψ -1 (2/b n+1 ) Ψ -1 (1/ε n ) ≤ 1 n ≤ Ch ,
in view of (4.12) and of the choice of n, C being a numerical constant. We should point out the fact that we applied the hole principle to the domains G 0 = Ω n and G 1 = Ω and that this was licit because the assumptions of the hole principle (in particular the inclusion ∂Ω n ⊆ ∂Ω ∪ H n ) are satisfied. We have therefore proved that: lim

h > → 0 ∆(h) = 0 ,
and this ends, as we already explained, the first part of the proof of Theorem 4.1.

To prove the last part, let us remark that in (4.12) we may take ε n arbitrarily small. If one takes ε n ≤ e -n , one has, for some constant c > 0, ρ ϕ (h) ≤ e -c/h , by using (4.17) and (4.18). In particular, ρ ϕ (h) ≤ C h α for every α > 1. By Luecking's criterion, that implies that C ϕ ∈ S p (H 2 ) for every p > 0 (see [START_REF] Lefèvre | Some examples of compact composition operators on H 2[END_REF], Corollary 3.2).

Remark. Let us note that our result is stronger than McCluer-Shapiro's, since our C ϕ is in all the Schatten classes S p (H 2 ), p > 0. Though our construction follows McCluer-Shapiro's, it is the introduction of the "barriers" P + n and P - n which allows to get this improvement.

Composition operators with closed range

In [START_REF] Cima | On some properties of composition operators[END_REF], J. Cima, J. Thomson and W. Wogen gave a characterization of composition operators C ϕ : H p → H p with closed range. This characterization involves the Radon-Nikodym derivative of the restriction to ∂D of m ϕ . They found it not satisfactory, and asked a characterization with the range of ϕ itself. N. Zorboska ([20]) gave such a characterization, but her statement is somewhat complicated. We shall give here more explicit characterizations, either in terms of the Nevanlinna counting function N ϕ , or in terms of the Carleson measure m ϕ .

Theorem 5.1 Let ϕ : D → D be a non-constant analytic self map. Then the composition operator C ϕ : H p → H p , 1 ≤ p < ∞, has a closed range if and only if there is a constant c > 0 such that, for 0 < h < 1,

(5.1) 1 A S(ξ, h) S(ξ,h) N ϕ (z) dA(z) ≥ c h , ∀ξ ∈ ∂D .
Theorem 5.1 will follow immediately from the next theorem, applied to µ = m ϕ , and from [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF], Theorem 4.2.

Theorem 5.2 Let µ be a finite positive measure on D. Assume that the canonical map J : H p → L p (µ) is continuous, 1 ≤ p < ∞. Then J is one-to-one and has a closed range if and only if there is a constant c > 0 such that, for

0 < h < 1, (5.2) µ W (ξ, h) ≥ c h , ∀ξ ∈ ∂D .
Proof. 1) Assume that J has a closed range. By making a rotation on the variable z, we only have to find a constant c > 0 such that

(5.3) µ(S h ) ≥ c h ,
for h > 0 small enough, where S h = S(1, h).

Since J is one-to-one, there is a constant C > 0 such that:

(5.4)

f p L p (µ) ≥ C p f p p , ∀f ∈ H p .
We are going to test (5.4) on

(5.5) f N (z) = 1 + z 2 N .
It is classical that there is a constant c p > 0 such that:

(5.6)

f N p p = π -π cos t 2 pN dt ≥ c p √ N • Now, since |z + 1| 2 + |z -1| 2 = 2(|z| 2 + 1
) ≤ 4 for every z ∈ D, one has:

|f N (z)| ≤ 1 - |z -1| 2 4 N/2 ≤ e -N 8 |z-1| 2 .
Hence, using |f N (z)| ≤ 1 when |z -1| ≤ h, one has:

f N p L p (µ) ≤ µ(S h ) + |z-1|>h e -p N 8 |z-1| 2 dµ = µ(S h ) + e -pN h 2 /8 0 µ {e -p N 8 |z-1| 2 > u} du ,
that is, making the change of variable u = e -p N 8 x 2 ,

f N p L p (µ) ≤ µ(S h ) + ∞ h µ({|z -1| ≤ x}) pN 4 x e -p N 8 x 2 dx .
Now, the continuity of J means, by Carleson's Theorem see [START_REF] Duren | Theory of H p spaces[END_REF], Theorem 9.3), that there is a constant K > 0 such that:

(5.7) sup |ξ|=1 µ S(ξ, x) ≤ K x , 0 ≤ x < 1 .
We get hence:

f N p L p (µ) ≤ µ(S h ) + ∞ h K x pN 4 x e -p N 8 x 2 dx = µ(S h ) + K √ 8 √ p 1 √ N ∞ h √ pN 8
y 2 e -y 2 dy .

We take now for N the smaller integer > 1/h 2 , multiplied by some constant integer a p , large enough to have:

K √ 8 √ p ∞ √ p ap 8 y 2 e -y 2 dy ≤ c p C p 2 •
We get then, from (5.4) and (5.6):

µ(S h ) ≥ C p c p 2 1 √ N ,
which gives (5.3).

2) Conversely, assume that (5.2) holds. Since the disk algebra A(D) is dense in H p , it suffices to show that there exists a constant C > 0 such that f L p (µ) ≥ C f p for every f ∈ A(D).

Let f ∈ A(D) such that f p = 1. Choose an integer N such that:

1

N N n=1 |f (e 2πin/N )| p ≥ 1 2 ∂D |f (ξ)| p dm(ξ) = 1 2 ,
and such that, due to the uniform continuity of f ,

z, z ′ ∈ D and |z -z ′ | ≤ 2π N =⇒ |f (z) -f (z ′ )| ≤ 1 2 (p+1)/p •
Then, setting W n = W (e 2πin/N , π/N ), 1 ≤ n ≤ N , one has:

f p L p (µ) = D |f | p dµ ≥ N n=1 Wn |f | p dµ .
If we choose z n ∈ W n such that |f (z n )| = min z∈Wn |f (z)|, we get, using (5.2):

f p L p (µ) ≥ N n=1 |f (z n )| p µ(W n ) ≥ cπ N N n=1 |f (z n )| p . Since A p ≤ 2 p-1 [(A -B) p + B p ]
, by Hölder's inequality, one has:

|f (z n )| p ≥ 1 2 p-1 |f (e 2πin/N )| p -|f (z n ) -f (e 2πin/N )| p
and hence:

f p L p (µ) ≥ cπ N N n=1 1 2 p-1 |f (e 2πin/N )| p -|f (z n ) -f (e 2πin/N )| p .
Now, since z n ∈ W n , one has:

|z n -e 2πin/N | ≤ z n - z n |z n | + z n |z n | -e 2πin/N ≤ π N + π N = 2π N ; therefore |f (z n ) -f (e 2πin/N )| ≤ 1/2 p+1
and we get:

f p L p (µ) ≥ cπ 1 N N n=1 1 2 p-1 |f (e 2πin/N )| p - 1 2 p+1 ≥ cπ 1 2 p-1 1 2 - 1 2 p+1 = cπ 2 p+1 •
That ends the proof of Theorem 5.2.

Remark. To make the link with Cima-Thomson-Wogen's criterion, we shall see that condition 5.2 implies that the restriction of µ to the boundary T = ∂D of the disk dominates the Lebesgue measure m. In fact, let I be an arc of T. If m(I) = h, we can write:

I = n≥1 n j=1 W (ξ n,j , h/2n) ,
with disjoint windows W (ξ n,1 , h/2n), . . . , W (ξ n,n , h/2n); hence:

µ(I) = lim n→∞ n j=1 µ[W (ξ n,j , h/2n)] ≥ c n j=1 h 2n = c 2 h .

Composition operators in Schatten classes

In [START_REF] Luecking | Trace ideal criteria for Toeplitz operators[END_REF], D. Luecking characterized composition operators C ϕ : H 2 → H 2 which are in the Schatten classes, by using, essentially, the m ϕ -measure of Carleson windows. Five years later, D. Luecking and K. Zhu ( [START_REF] Luecking | Composition operators belonging to the Schatten ideals[END_REF]) characterized them by using the Nevanlinna counting function of ϕ. We shall see in this section how the result of [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF] makes these two characterizations directly equivalent.

It will be convenient here to work with modified Carleson windows, namely:

W n,j = z ∈ D ; 1 -2 -n ≤ |z| ≤ 1 and (2j -1)π 2 n ≤ arg z < (2j + 1)π 2 n
(j = 0, 1, . . . , 2 n -1, n = 1, 2, . . .). We shall say that W n,j is the Carleson window centered at e 2πij/2 n with size 2 -n . 

∞ n=1 2 n -1 j=0 2 n m ϕ (W n,j ) p/2 < ∞ .
Condition b) in the last theorem yields that lim n→∞ max j 2 n m ϕ (W n,j ) = 0, and it is not difficult to see that this implies that m ϕ (∂D) = 0, or equivalently, that |ϕ * | < 1 almost evereywhere on ∂D. In this situation we know ([9], Proposition 3.3) that b) in Theorem 6.1 is equivalent to Luecking's condition in [START_REF] Luecking | Trace ideal criteria for Toeplitz operators[END_REF]. In fact the characterization of belonging to a Schatten class in [START_REF] Luecking | Trace ideal criteria for Toeplitz operators[END_REF] includes the requirement m ϕ (∂D) = 0.

Proof. We may, and do, assume that ϕ(0) = 0.

1) Assume first that condition b) is satisfied. Let:

R n,j = z ∈ D ; 1-2 -n ≤ |z| < 1-2 -n-1 and (2j -1)π 2 n ≤ arg z < (2j + 1)π 2 n
be the (disjoint) Luecking windows (0 ≤ j ≤ 2 n -1, n ≥ 0). One has R n,j ⊆ W n,j . By [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF], Theorem 3.1, there are a constant C > 0 and an integer K such that N ϕ (z) ≤ C m ϕ ( W n,j ), for every z ∈ R n,j , where W n,j is the window centered at e 2πij/2 n , as W n,j , but with size 2 K-n . The windows W n-K,j , j = 0, 1, . . . , 2 n-K -1, have the same size as the windows W n,j , but may have a different center; nevertheless, each W n,j can be covered with two windows W n-K,l : for n > K, W n,j ⊆ W n-K,l ∪ W n-K,l+1 , for some l = 1, 2, . . . , 2 n-K (where l + 1 is understood as 0 if l = 2 n-K -1), we get (we shall use to mean ≤ up to a constant):

D N ϕ (z) p/2 (1 -|z|) p 2 +2 dA(z) ≤ n,j Rn,j (2 n ) p 2 +2 N ϕ (z) p/2 dA(z) n,j Rn,j (2 n ) p 2 +2 m ϕ ( W n,j ) p/2 dA(z) n,j (2 n ) p/2 m ϕ ( W n,j ) p/2 ν,l (2 ν ) p/2 m ϕ (W ν,l ) p/2 < ∞,
and a) holds.

2) Conversely, assume that a) is satisfied. We shall use the following inequality, whose proof will be postponed (for p ≥ 2, (6.1) follows directly from [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF], Theorem 4.2, and Hölder's inequality): (6.1) [m ϕ (W n,j )] p/2 1 A( W n,j ) Wn,j [N ϕ (z)] p/2 dA(z) ,

where W n,j is a window with the same center as W n,j but with a bigger proportional size; say of size 2 -n+L . We get: Let k = 0, 1, . . . such that 1 -2 -k+1 < |z| ≤ 1 -2 -k . One has z ∈ W n,j only if n ≤ k + L, and then, for each such n, z is at most in 2 L windows W n,j . It follows that: It remains to show (6.1). By [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF], Theorem 4.1, we can find a window W with the same center as W n,j , but with greater size ch (h = 2 -n is the size of the window W n,j ), such that: m ϕ (W n,j ) sup w∈W N ϕ (w).

There is hence some w 0 ∈ W such that: m ϕ (W n,j ) N ϕ (w 0 ).

Take R = |w 0 | + ch (one has R ≥ 1 since w 0 ∈ W and W has size ch) and set ϕ 0 (z) = ϕ(z)/R. One has N ϕ0 (z) = N ϕ (Rz) for |z| < 1/R and N ϕ0 (z) = 0 if |z| ≥ 1/R.

Let now u be the upper subharmonic regularization of N ϕ0 ([13], Lemma 1, and its proof page 1140): u is a subharmonic function on D \ {0} such that u ≥ N ϕ0 and u = N ϕ0 almost everywhere, with respect to dA.

A result of C. Fefferman and E. M. Stein ([5], Lemma 2), generously attributed by them to Hardy and Littlewood, asserts that for any q > 0, there exists a constant C = C(q) such that (6.2) [u(a)] q ≤ C A D(a, r) D(a,r)

[u(z)] q dA(z)

for every nonnegative subharmonic function u on a domain G and every disk D(a, r) ⊆ G (see also [START_REF] Luecking | Composition operators belonging to the Schatten ideals[END_REF], Lemma 3). If ∆ is the disk centered at w 0 /R and of radius 1-|w 0 |/R (which is contained in D \ {0} since R > |w 0 |), one has, by (6. Since the center w 0 of ∆ is in D, ∆ ∩ D contains more than a quarter of ∆ (at least for ch ≤ 1), and hence A( ∆ ∩ D) ≥ A( ∆)/4 = c 2 h 2 /4π. Now, let Wn,j be the window with the same center as W n,j and of size 2ch. Since 2ch ≥ ch + (1 -|w 0 |), Wn,j contains ∆ ∩ D and A( Wn,j ) ≈ h 2 ≈ A( ∆) (≈ meaning that the ratio is between two absolute constants). We therefore get:

[N ϕ (w 0 )] p/2 1 A( Wn,j ) Wn,j

[N ϕ (w)] p/2 dA(w) , proving (6.1).

  ) we get |B(z)| ≤ 1-δ(1-|z|), when 1 > |z| > r 6 .From this and (3.15), Theorem 3.1 follows.

  , since d(a, 0) = |a| and d(0, b) = |b|.

(4. 2 )

 2 R = z = x + iy ∈ C ; x > 0 and 1 x < y < 1 x + 4π , let g : D → R be a Riemann map and set ϕ = e -g . Then, ϕ is 2-valent, ϕ(D) = D * (where D * = D \ {0}), and the validity of (4.1

Lemma 4 . 2 (

 42 Hole principle) Let G 0 and G 1 be two hyperbolic open sets and H ⊆ ∂G 0 a Borel set such that

Proposition 4 . 3 (

 43 Continuity principle) If G is a hyperbolic open set and a ∈ G, then the harmonic measure ω G (a, . ) is atomless. Proof of Theorem 4.1. It will be enough to construct a 2-valent mapping ϕ : D → D such that ϕ(D) = D * and C ϕ : H Ψ → H Ψ is compact. We can then modify ϕ by the same trick as the one used by B. McCluer and J. Shapiro. Note that every point in D * is the image by e -z of two distinct points of R, except those which are the image of points of the hyperbola y = (1/x) + 2π, which have only one pre-image.

Theorem 6 . 1

 61 For p > 0 the two following conditions are equivalent: a) N ϕ (z) log(1/|z|) ∈ L p/2 (λ) , where dλ(z) = (1 -|z|) -2 dA(z) and A is the normalized area measure on D; b)

[ 2 1I

 2 n m ϕ (W n,j )] p/2 n,j 2 np/2 2 2n Wn,j [N ϕ (z)] p/2 dA(z) Wn,j (z) [N ϕ (z)] p/2 dA(z) .

1I 2 D

 2 Wn,j (z) ≤ 2 (k+L+1)(2+ p 2 ) × 2 L . But |z| ≥ 1 -2 -k+1 implies 2 (k+L+1)(2+ p 2 ) ≤ C p /(1 -|z|) 2+ p 2 ; hence: n,j [2 n m ϕ (W n,j )] p/[N ϕ (z)] p/2 (1 -|z|) p 2 +2 dA(z) < ∞ ,and b) holds.

  2): [N ϕ (w 0 )] p/2 = [N ϕ0 (w 0 /R)] p/2 ≤ [u(w 0 /R)] p/2 ≤ C A(∆) ∆ [u(z)] p/2 dA(z) = C A(∆) ∆ [N ϕ0 (z)] p/2 dA(z) = C A(∆) ∆∩D(0,1/R) [N ϕ (Rz)] p/2 dA(z) = C A( ∆) ∆∩D [N ϕ (w)] p/2 dA(w) ,where ∆ = D(w 0 , R -|w 0 |) = D(w 0 , ch).