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Abstract

We prove that the basic intersection cohomologyIH
∗

p
(M/F ), whereF is the singular foliation

determined by an isometric action of a Lie groupG on the compact manifoldM, is finite dimensional.

This paper deals with an actionΦ : G × M → M of a Lie group on a compact manifold preserving
a riemannian metric on it. The orbits of this action define a singular foliationF on M. Putting together
the orbits of the same dimension we get a stratification ofM. This structure is still very regular. The
foliationF is in fact a conical foliation and we can define the basic intersection cohomologyIH

∗

p
(M/F )

(cf. [10]). This invariant becomes the basic cohomologyH
∗

(M/F ) when the actionΦ is almost free, and
the intersection cohomologyIH

∗

p
(M/G) when the Lie groupG is compact.

The aim of this work is to prove that this cohomologyIH
∗

p
(M/F ) is finite dimensional. This result

generalizes [3] (almost free case), [11] (abelian case) and [10] (compact case).

The paper is organized as follows. In Section 1 we present thefoliation F . The basic intersection
cohomologyIH

∗

p
(M/F ) associated to this foliation is studied in Section two. Twisted products are studied

in Section 3. The finiteness ofIH
∗

p
(M/F ) is proved in Section 4.

In the sequelM is a connected, second countable, Haussdorff, without boundary and smooth (of class
C∞) manifold of dimensionm. All the maps are considered smooth unless something else isindicated.

1 Killing foliations determined by isometric actions.

We study in this work the foliations induced by isometric actions: theKilling foliations. These foliations
are examples of the conical foliations for which the basic intersection cohomology has been defined (see
[10, 11]). We present this geometrical framework in this section.
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1.1 Killing foliations . A smooth actionΦ : G × M → M of a Lie groupG on a manifoldM is a
isometric actionwhen there exists a riemannian metricµ on M preserved byG.

The connected components of the orbits of the actionΦ determine a partitionF on M. In fact, this
partition is a singular riemannian foliation that we shall call Killing foliation (cf. [7]). Notice thatF
is also a conical foliation in the sense of [10, 11]. Classifying the points ofM following the dimension
of the leaves ofF one gets thestratificationS

F
of F . It is determined by the equivalence relation

x ∼ y⇔ dimGx = dimGy. The elements ofS
F

are calledstrata.
In the particular case where the closure ofG in the isometry group of (M, µ) is a compact Lie group1

we shall say that the actionΦ is a tame action. In fact, a smooth actionΦ : G × M → M is tame if and
only if it extends to a smooth actionΦ : K × M → M whereK is a compact Lie group containingG (cf.
[6]). The groupK is not unique, but we always can chooseK in such a way thatG is dense inK. We
shall say thatK is atamer group. Here the strata ofS

F
areK-invariant closed submanifolds ofM.

Since the aim of this work is the study ofF and not the actionΦ itself, we can consider that the Lie
groupG is connected. Let us see that.

Proposition 1.1.1 Let Φ : G × M → M is a tame action. Let G0 be the connected component of G
containing the unity element. The Killing folation defined by the restrictionΦ : G0 × M → M is alsoF .

Proof. The partitionF is defined by this equivalence relation:

x ∼ y⇐⇒ ∃ continuous pathα : [0, 1]→ G(x) such thatα(0) = x andα(1) = y.

Since the map∆ : G → G(x), defined by∆(g) = Φ(g, x) = g · x, is a submersion (see for example [2])
then

x ∼ y⇐⇒ ∃ continuous pathβ : [0, 1]→ G such thatβ(0) = eandβ(1) · x = y,

and by definition ofG0

x ∼ y⇐⇒ ∃ continuous pathβ : [0, 1]→ G0 such thatβ(0) = eandβ(1) · x = y.

This gives the result. ♣

WhenG is connected, the tamer groupK has richer properties.

Proposition 1.1.2 Let G be a connected Lie subgroup of a compact Lie group K. If G is dense in K then
G ⊳ K and the quotient group K/G is commutative.

Proof. The Lie algebrag is AdG- invariant and hence, by density, AdK-invariant. Theng is an ideal of
k. The connectedness ofG gives thatG is a normal subgroup ofK. Since AdG acts trivially onk/g, Ad K

acts trivially, too. Therefore,k/g is abelian (see for example [8, pag. 628]). ♣

1.2 Particular tame actions.A trio is a triple (K,G,H), with K is a compact Lie group,G a normal
subgroup ofK andH a closed subgroup ofK. We present now some tame actions associated to a trio
(K,G,H). They are going to be intensively used in this work. First ofall we need some definitions.

- The actionΦl : K ×K → K is defined byΦl(g, k) = g · k. For each elementu of the Lie algebrak of
K, we shall writeXu the associated (right invariant) vector field. It is defined by Xu(k) = TeRk(u)
whereRk : K → K is given byRk(ℓ) = ℓ · k.

1This is always the case when the manifoldM is a compact.
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- The actionΦr : K × K → K is defined byΦr(g, k) = k · g−1. For each elementu ∈ k of K, we
shall writeXu the associated (left invariant) vector field. It is defined byXu(k) = −TeLk(u) where
Lk : K → K is given byLk(ℓ) = k · ℓ.

- The actionΨ : K × K/H → K/H is defined byΨ(g, kH) = (g · k)H. For each elementu ∈ k,
we shall writeYu the associated vector field. Since the canonical projectionπ : K → K/H is a
K-equivariant map, then we haveπ∗Xu

= Yu for eachu ∈ k.

- The actionΓ : H × H → H is defined byΓ(g, h) = g · h. For each elementu of the Lie algebrah of
H we writeZu the associated (right invariant) vector field.

The associated actions we are going to use are the following.

(a) The restrictionΦl : G× K → K, which induces the regular Killing foliationK .

(b) The restrictionΦr : G× K → K, which induces the regular Killing foliationK .

SinceG ⊳ K, the foliationK is determined by the family of vector fields{Xu / u ∈ g}, whereg is the Lie
algebra ofG, and also by the family{Xu / u ∈ g}. The orbitsG(k) = Gk = kG have the same dimension
dimG.

(c) The restrictionΨ : G× K/H → K/H, which induces the regular Killing foliationD.

The foliationD is determined by the family of vector fields{Yu / u ∈ g}. The orbitsG(kH) have the same
dimension dimG− dim(G∩ H).

(d) The restrictionΓ : (G∩ H) × H → H, which induces the regular Killing foliationC.

The foliationC is determined by the family of vector fields{Zu / u ∈ g ∩ h}. The orbits (G∩ H)(k) have
the same dimension dim(G∩ H).

(e) The restrictionΦr : GH × K → K, which induces the regular Killing foliationE.

Notice thatGH is a Lie group sinceG is normal inK. The foliationE is, in fact, determined by the
vector fields{Xu / u ∈ g+ h}. The orbits (GH)(k) have the same dimension dimG+dimH −dim(G∩H).

1.3 Twisted product. In order to prove the finiteness of the basic intersection cohomology we de-
compose the manifold in a finite number of simpler pieces. These are the twisted products we introduce
now.

We fix a trio (K,G,H) and a smooth actionΘ : H × N → N of H on the manifoldN. The twisted
productis the quotientK×H N of K × N by the equivalence relation (k, z) ∼ (k · h−1,Θ(h, z) = h · z). The
element ofK×H N corresponding to (k, z) ∈ K ×N is denoted by< k, z>. This manifold is endowed with
the tame action

Φ : G× (K×H N) −→ (K×H N),

defined byΦ(g, < k, z>) =< g · k, z>. We denote byW the induced Killing foliation.
We also use the following tame action, namely, the restriction

Θ : (G∩ H) × N → N

whose induced Killing foliation is denoted byN .
The canonical projectionΠ : K × N→ K ×H N relates the involved foliations as follows:

(a) Π∗(K × I) =W, whereI is the pointwise foliation (since the mapΠ is G-equivariant).

(b) S
W
= {Π(K × S) / S ∈ S

N
} = Π

(
{K} × S

N

)
(sinceG<k,z> = k(G∩ H)zk−1).
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2 Basic Intersection cohomology

In this section we recall the definition of the basic intersection2 cohomology and we present the main
properties we are going to use in this work. For the rest of this section, we fix a conical foliationF
defied on a manifoldM. The associated stratification isS

F
. The regular stratum of is denoted byR

F
. We

shall writem= dim M, r = dimF ands= m− r = codimM F .

We are going to deal with differential forms on a product (manifold)× [0, 1[p, they are restrictions of
differential forms defined on (manifold)×] − 1, 1[p.

2.1 Perverse forms. Recall that aconical chartis a foliated diffeomorphismϕ : (Rm−n−1 × cSn,H ×

cG) → (U,FU) where (Rm−n−1,H) is a simple foliation and (Sn,G) is a conical foliation without 0-
dimensional leaves. We also shall denote this chart by (U, ϕ,S) whereS is the stratum ofS

F
verifying

ϕ(Rm−n−1 × {ϑ}) = U ∩ S.
The differential complexΠ

∗

F
(M × [0, 1[p) of perverse formsof M× [0, 1[p is introduced by induction

on depthS
F
. When this depth is 0 then

Π
∗

F
(M × [0, 1[p) = Ω

∗

(M × [0, 1[p).

Consider now the generic case. A perverse form ofM × [0, 1[p is first of all a differential form
ω ∈ Ω

∗

(RF × [0, 1[p) such that,


the pull-back (ϕ × I[0,1[p)∗ω ∈ Ω

∗
(
R

m−n−1 × R
G
×]0, 1[×[0, 1[p

)

extends to ω
ϕ
∈ Π

∗

H×cG

(
R

m−n−1 × Sn × [0, 1[p+1
)

for any conical chart (U, ϕ), whereI
•

stands for the identity map. Notice thatΩ
∗

(M) is included on
Π
∗

F
(M)3.

2.2 Perverse degree.The amount of transversality of a perverse formω ∈ Π
∗

F
(M) with respect to a

singular stratumS ∈ S
F

is measured by the perverse degree||ω||
S
. We recall here the definition of local

perverse degree||ω||
U
∈ {−∞} ∪ N of ω relatively to a conical chart (U, ϕ,S):

1. ||ω||
U
= −∞ whenω

ϕ
≡ 0 onRm−n−1 × R

G
× {0},

2. ||ω||
U
≤ p, with p ∈ N, whenω

ϕ
(v0, . . . , vp,−) ≡ 0 where the vectors{v0, . . . , vp} are tangent to the

fibers ofP
ϕ
: Rm−n−1 × R

G
× {0} −→ U ∩ S4.

This number does not depend on the choice of the conical chart(cf. [11, Proposition 1.3.1]). Finally, we
define theperverse degree||ω||

S
by

||ω||
S
= sup

{
||ω||

U
/ (U, ϕ,S) conical chart

}
.

The perverse degree ofω ∈ Ω
∗

(M) verifies||ω||
S
≤ 0 for any singular stratumS ∈ S

F
(cf. 2.1).

2We refer the reader to [10],[11] for details.
3Through the restrictionω 7→ ωR

F
.

4The mapP
ϕ
: Rm−n−1 × Sn × [0, 1[−→ U is defined byP

ϕ
(x, y, t) = ϕ(x, [y, t]).
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2.3 Basic cohomology. The basic cohomology of the foliationF is an important tool to study its
transversal structure and plays the rôle of the cohomologyof the orbit spaceM/F , which can be a wild
topological espace. A differential formω ∈ Ω

∗

(M) is basicif iXω = iXdω = 0, for each vector fieldX on
M tangent to the foliationF . For exemple, a functionf is basic iff f is constant on the leaves ofF . We
shall writeΩ

∗

(M/F ) for the complex of basic forms. Its cohomologyH
∗

(M/F ) is thebasic cohomology
of (M,F ). We also use therelative basic cohomology H

∗

((M, F)/F ), that is, the cohomology computed
from the complex of basic forms vanishing on the saturated set F ⊂ M. The basic cohomology does not
use the stratificationS

F
.

2.4 Basic intersection cohomology. A perversityis a mapp: S
σ

F
→ Z ∪ {−∞,∞}, whereS

σ

F
is the

family of singular strata. Theconstant perversityι is defined byι(S) = ι, whereι ∈ Z ∪ {−∞,∞}.
The basic intersection cohomology appears when one considers basic perverse forms whose perverse

degree is controlled by a perversity. We shall put

Ω
∗

p
(M/F ) =

{
ω ∈ Π

∗

F
(M) / ω is basic and max

(
||ω||

S
, ||dω||

S

)
≤ p(S) ∀S ∈ S

σ

F

}

the complex of basic perverse forms whose perverse degree (and that of the their derivative) is bounded
by the perversityp. The cohomologyIH

∗

p
(M/F ) of this complex is thebasic intersection cohomology5

of (M,F ) relatively to the perversityp.
Consider a twisted productK×H N. Perversities onK×H N andK × N are determinate by perversities

on N by the formula (cf.1.3(b)):

(1) p(K × S) = p(Π(K × S)) = p(S).

2.5 Mayer-Vietoris. This is the technique we use in order to decompose the manifold in nicer pieces.
An open covering{U,V} of M by saturated open subsets is abasic covering. It possesses a subordinated
partition of the unity made up of basic functions defined onM (see [9]). For a such covering we have
the Mayer-Vietoris short sequence

0→ Ω
∗

p
(M/F )→ Ω

∗

p
(U/F ) ⊕ Ω

∗

p
(V/F )→ Ω

∗

p
((U ∩ V)/F )→ 0,

where the map are defined byω 7→ (ω,ω) and (α, β) 7→ α−β. The third map is onto since the elements of
the partition of the unity arecontrolled functions, id est, elements ofΩ

0

0
(−) (cf. 2.2). Thus, the sequence

is exact. This result is not longer true for more general coverings.
We shall use in this work the two following local calculations (see [11, Proposition 3.5.1 and Propo-

sition 3.5.2] for the proofs).

Proposition 2.6 Let (Rk,H) be a simple foliation. Considerp a perversity on M and define the per-
versity p onRk × M by p(Rk × S) = p(S). The canonical projectionpr : Rk × M → M induces the
isomorphism

IH
∗

p
(M/F ) � IH

∗

p

(
R

k × M/H × F
)
.

Proposition 2.7 Let G be a conical foliation without 0-dimensional leaves on the sphereSn. A per-
versityp on cSn gives the perversityp onSn defined byp(S) = p(S×]0, 1[). The canonical projection
pr : Sn×]0, 1[→ Sn induces the isomorphism

IH
i

p
(cSn/cG) =

{
IH

i

p
(Sn/G) if i ≤ p({ϑ})
0 if i > p({ϑ}).

5BIC for short.
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In the next section we shall need the following technical Lemma.

Lemma 2.8 LetΦ : K × M → M be a smooth action, where K is a compact Lie group, and let V bea
fundamental vector field of this action. Consider a normal subgroup G of K and writeF the associated
conical foliation on M. Then, the interior operator iV : Ω

∗

p
(M/F ) −→ Ω

∗−1

p
(M/F ) is well defined, for any

perversityp.

Proof. Since the question is a local one, then it suffices to consider whereM is a twisted product
K×H N6. Notice that the blow upΠ : K × N → K×H N is a K-equivariant map relatively to the action
ℓ · (k, z) = (ℓ · k, z). This givesΠ∗(Xu, 0) = V for someu ∈ k. From Lemma3.1we know that it suffices
to prove that the operator

i(Xu,0) : Ω
∗

p
(K × N/K ×N) −→ Ω

∗−1

p
(K × N/K ×N)

is well defined. SinceG ⊳ K then the vector fieldXu preserves the foliationK . So, it suffices to prove
that the operator

i(Xu,0) : Ω
∗

p
(K × N) −→ Ω

∗−1

p
(K × N)

is well defined. This comes from the fact thatXu acts on theK-factor while the perversion conditions
are measured on theN-factor (cf. (1)). ♣

3 The BIC of a twisted product

We compute now the BIC of a twisted productK×H N (cf. 1.3) for a perversityp (cf. (1)).

Lemma 3.1 The natural projectionΠ : K × N→ K×H N induces the differential monomorphism

(2) Π
∗ : Ω

∗

p

(
K×H N/W

)
−→ Ω

∗

p
(K × N/K ×N).

Moreover, given a differential formω on K×H RW, we have:

(3) Π
∗ω ∈ Ω

∗

p
(K × N/K ×N)⇐⇒ ω ∈ Ω

∗

p

(
K×H N/W

)
.

Proof.Notice that the injectivity ofΠ∗ comes from the fact thatΠ is a surjection. For the rest, we proceed
in several steps.

(a) A foliated atlas forπ : K → K/H.

Sinceπ : K → K/H is a H-principal bundle then it possesses an atlasA =
{
ϕ : π−1(U) −→ U × H

}

made up withH-equivariant charts:ϕ(k · h−1) = (π(k), h · h0) if ϕ(k) = (π(k), h0). We study the foliation
ϕ
∗K . This equivariance property givesϕ∗Xu = (0,Zu) for eachu ∈ g ∩ h. Thus, the trace of the foliation
ϕ
∗K on the fibers of the canonical projection pr :U × H → U is C. On the other hand, since the mapπ

is aG-equivariant map thenπ∗K = D, which gives pr∗ ϕ∗K = D. We conclude thatϕ∗K ⊂ D × C. By
dimension reasons we getϕ∗K = D× C. The atlasA is anH-equivariant foliated atlas ofπ.

(b) A foliated atlas forΠ : K × N → K×H N.

6In fact,N is an euclidean spaceRa etΘ is an orthogonal action.
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We claim thatA# =

{
ϕ : π−1(U)×H N −→ U × N / (U, ϕ) ∈ A

}
is a foliated atlas ofK×H N where the

mapϕ is defined byϕ(< k, z>) = (π(k), (Θ((ϕ−1(π(k), e))−1 · k, z))). This map is a diffeomorphism whose
inverse isϕ

−1
(u, z) =< ϕ−1(u, e), z>. It verifies

ϕ
∗W

1.3(a)
=== ϕ∗Π∗(K × I) = ϕ∗Π∗(ϕ

−1 × I N)∗(D× C × I).

A straightforward calculation showsϕ◦Π◦(ϕ−1 × I N) = (I U ×Θ). SinceC is defined by the actionΓ then
Θ∗(C × I) = N . Finally we obtainϕ∗W = D×N .

(c) Last Step.
Given (U, ϕ) ∈ A#, we have the commutative diagram

U × H × N

Q
��

ϕ−1×I N
// K × N

Π

��

U × N
ϕ−1

// K×H N

whereQ(u, h, z) = (u, h−1 · z), Π−1(Im ϕ
−1

) = Im
(
ϕ−1 × I N

)
and the rows are foliated imbeddings. Now,

since (2) and (3) are local questions then it suffices to prove that

- Q∗ : Ω
∗

p
(U × N/D ×N) −→ Ω

∗

p
(U × H × N/D × C ×N) is well-defined, and

- Q∗ω ∈ Ω
∗

p
(U × H × N/D × C × N)⇐⇒ ω ∈ Ω

∗

p
(U × N/D×N), for anyω ∈ Ω

∗

(U × RN).

This comes from the fact that the map

∇ : (U × H × N,D× C ×N) −→ (U × H × N,D × C ×N),

defined by∇(u, h, z) = (u, h, h−1 · z)), is a foliated diffeomorphism7 andQ = pr 0 ◦∇, with pr0 : U × H ×
N→ U × N canonical projection (cf. Proposition2.6). ♣

3.2 The Lie algebrak. We suppose in this paragraph that thatG is also dense onK. Chooseν a
bi-invariant riemannian metric onK, which exists by compactness. Consider

B =
{
u1, . . .ua, ua+1, . . . , ub, ub+1, . . . , uc, uc+1, . . . , uf

}

an orthonormal basis of the Lie algebrak of K with {u1, . . .ub} basis of the Lie algebrag of G and
{ua+1, . . .uc} basis of the Lie algebrah of H. For each indice 1≤ i ≤ f we shall writeXi ≡ Xui and
Xi ≡ Xui (cf. 1.2).

Let γi ∈ Ω
1
(K) be the dual form ofXi, that is,γi = iXiν. Notice thatδi j = γ j(Xi). These forms are

invariant by the left action ofK. Since the flow ofX j is the multiplication on the left by exp(tu j) then
LX jγi = 0 for each 1≤ j ≤ f .

For the differential, we have the formuladγl =

∑

1≤i< j≤ f

Cl
i jγi ∧ γ j, where [Xi ,X j] =

f∑

l=1

Cl
i j Xl , and 1≤

i, j, l ≤ f . We have several restrictions on these coefficients. SinceG ⊳ K theng is an ideal ofk and
therefore we have

Cl
i j = 0 for i ≤ b < l.

7SinceG∩ H ⊳ H.
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SinceK/G is an abelian group (cf. Proposition1.1.2) then the induced bracket onk/g is zero and therefore
we have

Cl
i j = 0 for b < i, j, l ≤ f .

These equations imply that

(4) dγl = 0 for eachb < l.

TheE-basic differential forms in
∧∗

(γ1, . . . , γ f ) are exactly
∧∗

(γc+1, . . . , γ f ) since they are cycles
and the family{X1, . . . ,Xc} generates the foliationE. This gives

(5) H
∗
(
K
/
E
)
=

∧∗

(γc+1, . . . , γ f ).

3.3 Two actions ofH/H0. The Lie groupH preserves the foliationN since the Lie groupG ∩ H is a
normal subgroup ofH. PutH0 the connected component ofH containing the unity element. Since it is a
connected compact Lie group then a standard argument shows that

(6)
(
IH
∗

p
(N/N)

)H0
= H

∗
((
Ω
.

p
(N/N)

)H0
)
= IH

∗

p
(N/N)

(cf. [5, Theorem I, Ch. IV, vol. II]). We conclude that the finite group H/H0 acts naturally onIH
∗

p
(N/N).

SinceH0 is a connected Lie subgroup ofGH then
(
H
∗

(K/E)
)H0
= H

∗

(K/E). We conclude that the
finite groupH/H0 acts naturally onH

∗

(K/E).

Proposition 3.4 Let (K,G,H) be a trio with G connected and dense in K. Then

IH
∗

p

(
K×H N/W

)
=

(
H
∗

(K/E) ⊗ IH
∗

p
(N/N)

)H/H0
.

Proof. Using the blow upΠ : K ×N→ K×H N, the computation ofIH
∗

p

(
K×H N/W

)
can be done by using

the complex Im
{
Π
∗ : Ω

∗

p

(
K×H N/F

)
−→ Ω

∗

p
(K × N/K ×N)

}
(cf. Lemma3.1). We study this complex

in several steps. We fixB =
{
u1, . . . , uf

}
an orthonormal basis ofk as in3.2.

〈i〉 Description ofΩ
∗

(K × RN ).

A differential formω ∈ Ω
∗

(K × RN ) is of the form

(7) η +
∑

1≤i1<···<iℓ≤ f

γi1 ∧ · · · ∧ γiℓ ∧ ηi1,...,iℓ ,

where the formsη, ηi1,...,iℓ ∈ Ω
∗

(K × RN ) verify iX jη = iX jηi1,...,iℓ = 0 for each 1≤ j ≤ f and each
1 ≤ i1 < · · · < iℓ ≤ f .

〈ii 〉 Description ofΠ
∗

K×N
(K × N).

Since the foliationK is regular then we always can choose a conical chart of the form (U1×U2, ϕ1×
ϕ2) where (U1, ϕ1) is a foliated chart of (K,K) and (U2, ϕ2) is a conical chart of (N,N). The local blow
up of the chart (U1 × U2, ϕ1 × ϕ2) is constructed from the second factor without modifying the first one.
So, the differential formsγi are always perverse forms and a differential formω ∈ Π

∗

K×N
(K × N) is of

the form (7) whereη, ηi1,...,iℓ ∈ Π
∗

K×N
(K × N) verify iX jη = iX jηi1,...,iℓ = 0 for each 1≤ j ≤ f and each

1 ≤ i1 < · · · < iℓ ≤ f .
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〈iii 〉 Description ofΩ
∗

(K × RN/K ×N).

Takeω ∈ Ω
∗

(K × RN/K ×N). SinceK is generated by the family{X j / 1 ≤ j ≤ b} thenLX jω = 0
for any 1 ≤ j ≤ b, or equivalently,R∗gω = ω for eachg ∈ G sinceG is connected. By density,
R∗kω = ω for eachk ∈ K and thereforeLX jω = 0 for any 1 ≤ j ≤ f sinceK is connected. We
conclude thatLX jη = LX jηi1,...,iℓ = 0 for any 1≤ j ≤ f and each 1≤ i1 < · · · < iℓ ≤ f . This gives
ω ∈
∧∗(γ1, . . . , γ f ) ⊗Ω

∗

(RN ).
TheN-basic differential forms ofΩ

∗

(RN) are exactlyΩ
∗

(RN/N). TheK-basic differential forms of∧∗(γ1, . . . , γ f ) are exactly
∧∗(γb+1, . . . , γ f ) (cf. (4)). From these two facts, we get

Ω
∗

(K × RN/K ×N) =
∧∗

(γb+1, . . . , γ f ) ⊗ Ω
∗

(RN/N)

as differential graduate commutative algebras.

〈iv〉 Description ofΩ
∗

p
(K × N/K ×N).

From〈ii 〉 and〈iii 〉 it suffices to control the perverse degree of the forms

η +
∑

b+1≤i1<···<iℓ≤ f

γi1 ∧ · · · ∧ γiℓ ∧ ηi1,...,iℓ ∈
∧∗

(γb+1, . . . , γ f ) ⊗ Π
∗

N
(N).

ConsiderS a stratum ofS
N
. From ||γi ||K×S = 0 and||η||K×S = ||η||S, we get||γi1 ∧ . . . γiℓ ∧ ηi1,...,iℓ ||K×S =

||ηi1,...,iℓ ||S. We conclude that

Ω
∗

p
(K × N/K ×N) �

∧∗

(γb+1, . . . , γ f ) ⊗ Ω
∗

p
(N/N)

(cf. 1.3(b)).

〈v〉 Description of Im
{
Π
∗ : Ω

∗

p

(
K×H N/F

)
−→ Ω

∗

p
(K × N/K ×N)

}
.

We denote by{Wa+1, . . . ,Wc} the fundamental vector fields of the actionΘ : H × N → N asso-
ciated to the basis{ua+1, . . . , uc}. Consider now the actionΥ : H × (K × N) → (K × N) defined
by Υ(h, (k, z)) = (k · h−1,Θ(h, z)). Its fundamental vector fields associated to the basis{ua+1, . . . , uc}

are {(Xa+1,Wa+1), . . . , (Xc,Wc)}. Given h ∈ H, we takeΥh : K × N → K × N the map defined by
Υh(k, z) = Υ(h, (k, z)). Then, we have

Im Π∗ =


ω ∈
∧∗

(γb+1, . . . , γ f ) ⊗ Ω
∗

p
(N/N)

/ (i) iXiω = −iWiω if a < i ≤ c}

(ii) LXiω = −LWiω if a < i ≤ c},

(iii) (Υh)∗ω = ω for h ∈ H.


.

Let H0 be the unity connected component ofH. Recall that the subgroupH0 is normal inH and that the
quotientH/H0 is a finite group. Conditions (ii) gives thatω is H0-invariant. So, condition (iii) can be
replaced by: (iv) (Υh)∗ω = ω for h ∈ H/H0. Therefore

Im Π∗ =

ω ∈
∧∗

(γb+1, . . . , γ f ) ⊗Ω
∗

p
(N/N)

/ (i) iXiω = −iWiω if a < i ≤ c}

(ii) LXiω = −LWiω if a < i ≤ c}.



H/H0

.

Since the groupH/H0 is a finite one, we get that the cohomologyH
∗

(Im Π∗) is isomorphic to
(
H
∗

(A·)
)H/H0

,

whereA∗ is the differential complex
ω ∈

∧∗

(γb+1, . . . , γ f ) ⊗Ω
∗

p
(N/N)

/ (i) iXiω = −iWiω if a < i ≤ c}

(ii) LXiω = −LWiω if a < i ≤ c}

 .

So, it remains to computeH
∗

(A·). This computation can be simplified by using these three facts:
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- iWiω = LWiω = 0 for eacha < i ≤ b, since the foliationN is defined by the action ofG∩ H.

- iXiγ j = δi j for all i, j (cf. 3.2).

- dγ j = 0 for b < j (cf. (4)).

We get thatA∗ is the differential complex
ω ∈

∧∗

(γb+1, . . . , γ f ) ⊗ Ω
∗

p
(N/N)

/ (i) iXiω = −iWiω if b < i ≤ c}

(ii) 0 = LWiω if b < i ≤ c}

 =

∧∗

(γc+1, . . . , γ f ) ⊗

ω ∈
∧∗

(γb+1, . . . , γc) ⊗Ω
∗

p
(N/N)

/ (i) iXiω = −iWiω if b < i ≤ c}

(ii) 0 = LWiω if b < i ≤ c}


︸                                                                                      ︷︷                                                                                      ︸

B∗

.

A straightforward computation gives that the canonical writing of a formω ∈
∧∗(γb+1, . . . , γc)⊗Ω

∗

p
(N/N)

verifying (i) is

(8) ω = ω0 +

∑

b<i1<···<iℓ≤c

(−1)ℓγi1 ∧ · · · ∧ γiℓ ∧ (iWiℓ
· · · iWi1

ω0)

for someω0 ∈ Ω
∗

p
(N/N) (cf. Lemma2.8).

Consider nowb < i, j ≤ c. SinceK/G is an abelian group (cf. Proposition1.1.2) andH is a Lie group

then [Wi,Wj] =
b∑

l=a+1

Cl
i j Wl. Then,i [Wi ,Wj ]ω0 = 0 since the foliationN is defined by the action ofG∩ H.

So, the canonical writing of a formω ∈ B∗ is (8) for someω0 ∈
{
η ∈ Ω

∗

p
(N/N) / LWiη = 0 if b < i ≤ c

}
=

(
Ω
∗

p
(N/N)

)H0
.

Then, the operator∆ : B∗ −→
(
Ω
∗

p
(N/N)

)H0
, defined by∆(ω) = ω0, is a differential isomorphism. We

conclude that the differential complexA∗ is isomorphic to
∧∗(γc+1, . . . , γ f )⊗

(
Ω
∗

p
(N/N)

)H0
and therefore

H
∗

(A·) � H
∗

(K/E) ⊗ IH
∗

p
(N/N) (cf. (5) and (6)). Since the operator∆ is (H/H0)-equivariant (cf.3.3)

then we get

IH
∗

p

(
K×H N/W

)
= H

∗

(Im Π∗) =
(
H
∗

(A·)
)H/H0

=

(
H
∗

(K/E) ⊗ IH
∗

p
(N/N)

)H/H0
.

This ends the proof. ♣

3.5 Remarks.

(a) When the Lie groupG is commutative thenK is also commutative. Differential formsγ• are

K-invariants on the left and on the right, so
(
H
∗

(K/E)
)H
= H

∗

(K/E) and therefore

IH
∗

p

(
K×H N/W

)
= H

∗

(K/E) ⊗
(
IH
∗

p
(N/N)

)H/H0
= H

∗

(K/E) ⊗
(
IH
∗

p
(N/N)

)H

as it has been proved in [11, Proposition 3.8.4].

(b) Since the foliationE is a riemannian foliation defined on a compact manifold then we know that
the cohomologyH

∗

(K/E) is finite (cf. [4]). So, the finiteness ofIH
∗

p

(
K×H N/W

)
depends on the finiteness

of IH
∗

p
(N/N).
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4 Finiteness of the BIC

We prove in this section that the BIC of a Killing foliation ona compact manifold is finite dimensional.
First of all, we present two geometrical tools we shall use inthe proof: the isotropy type stratification
and the Molino’s blow up.

We fix an isometric actionΦ : G×M → M on the compact manifoldM. We denote byF the induced
Killing foliation. For the study ofF we can suppose thatG is connected (see Lemma1.1.1). We fix
K a tamer group. Notice that the groupG is normal inK and the quotientK/G is commutative (cf.
Proposition1.1.2).

4.1 Isotropy type stratification. The isotropy type stratificationSK,M of M is defined by the equiva-
lence relation8:

x ∼ y⇔ Kx is conjugated toKy.

When depthSK,M > 0, any closed stratumS ∈ SK,M is a K-invariant submanifold ofM and then it
possesses aK-invariant tubular neighborhood (T, τ,S,Rm) whose structural group isO(m). Recall that
there are the following smooth maps associated with this neighborhood:

+ The radius mapρ : T → [0, 1[ defined fiberwise from the assignation [x, t] 7→ t. Eacht , 0 is a
regular value of theρ. The pre-imageρ−1(0) is S. This map isK-invariant, that is,ρ(k · z) = ρ(z).

+ Thecontraction H: T × [0, 1] → T defined fiberwisely from ([x, t], r) 7→ [x, rt]. The restriction
Ht : T → T is an embedding for eacht , 0 andH0 ≡ τ. We shall writeH(z, t) = t · z. This map is
K-invariant, that is,t · (k · z) = k · (t · z).

The hyper-surfaceD = ρ−1(1/2) is thetubeof the tubular neighborhood. It is aK-invariant submanifold
of T. Notice that the map

∇ : D × [0, 1[−→ T,

defined by∇(z, t) = (2t) · z is aK-equivariant smooth map, whereK acts trivially on the [0, 1[-factor. Its
restriction∇ : D×]0, 1[−→ T\S is aK-equivariant diffeomorphism.

DenoteSmin the union of closed (minimal) strata and chooseTmin a disjoint family of K-invariant
tubular neighborhoods of the closed strata. The union of associated tubes is denoted byDmin. Notice that
the induced map∇min : Dmin×]0, 1[−→ Tmin\Smin is aK-equivariant diffeomorphism.

4.2 Molino’s blow up. The Molino’ blow up [7] of the foliationF produces a new foliation̂F of the
same kind but of smaller depth. We suppose depthSK,M > 0. Theblow upof M is the compact manifold

M̂ =
{(

Dmin×] − 1, 1[
)∐(

(M\Smin) × {−1, 1}
)} /
∼,

where (z, t) ∼ (∇min(z, |t|), t/|t|), and the mapL : M̂ −→ M defined by

L(v) =


∇min(z, |t|) if v = (z, t) ∈ Dmin×] − 1, 1[

z if v = (z, j) ∈ (M\Smin) × {−1, 1}.

Notice thatL is a continuous map whose restrictionL : M̂\L−1(Smin) → M\Smin is a K-equivariant
smooth trivial 2-covering.

8For notions related with compact Lie group actions, we referthe reader to [1].
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Since the map∇min is K-equivariant thenΦ induces the action̂Φ : K × M̂ −→ M̂ by saying that
the blow-upL is K-equivariant. The open submanifoldsL−1(Tmin) andL−1(Tmin\Smin) are clearlyK-
diffeomorphic toDmin×] − 1, 1[ andDmin × (] − 1, 0[∪]0, 1[) respectively.

The restriction̂Φ : G× M̂ −→ M̂ is an isometric action withK as a tamer group. The induced Killing
foliation is F̂ . FoliationsF andF̂ are related byL which is a foliated map. Moreover, ifS is a not
minimal stratum ofSK,M then there exists an unique stratumS′ ∈ S

K,M̂
such thatL−1(S) ⊂ S′. The family

{S′ / S ∈ SK,M } coversM̂ and verifies the relationship:S1 ≺ S2 ⇔ S′1 ≺ S′2. We conclude the important
property

(9) depthS
K,M̂
< depthSK,M .

4.3 Finiteness of a tubular neighborhood. We suppose depthSK,M > 0. Consider a closed stratum
S ∈ SK,M . Take (T, τ,S,Rm) a K-invariant tubular neighborhood. We fix a base pointx ∈ S. The isotropy
subgroupKx acts orthogonally on the fiberRm

= τ−1(x). So, the induced actionΛx : Gx×R
m→ Rm is an

isometric action, it gives the Killing foliationN onRm.

Proposition 4.3.1 If the BIC of(Rm,N) is finite dimensional then the BIC of(T,F ) is also finite dimen-
sional.

Proof. We proceed in two steps.

(a) Ky = Kx for each y∈ S.

The canonical projectionπ : S → S/K is an homogeneous bundle with fiberK/Kx. For any open
subsetV ⊂ S/K the pull backτ−1π−1(V) is a K-invariant subset ofT, then we can apply the Mayer-
Vietoris technics to this kind of subsets (cf.2.5).

Since the manifoldS/K is a compact one then we can find a finite good covering{Ui / i ∈ I } of it (cf.
[2]). An inductive argument on the cardinality ofI reduces the proof of the Lemma to the case where
T = τ−1π−1(V), whereV is a contractible open subset ofS/K.

Here, the manifoldT is K-equivalently diffeomorphic toV ×
(
K×Kx

R
m
)
, whereK does not act on the

first factor. So, the natural retraction ofV to a point gives aK-equivariant retraction ofT to the twisted
productK×Kx

R
m. Now the result comes directly from3.5(b) since (K,G,Kx) is a trio.

(b) General case.

The stratumS is K-equivariantly diffeomorphic to the twisted productK×N(Kx) F whereN(Kx) is the
normalizer ofKx on K andF = SKx. So, the tubular neighborhoodT is K-equivariantly diffeomorphic
to the twisted productK×N(H) N whereN is the manifoldτ−1(F). The previous case gives that the BIC of
(N,FN) is finite dimensional. Now the result comes directly from3.5(b) since (K,G,N(Kx)) is a trio. ♣

The main result of this work is the following

Theorem 4.4 The BIC of the foliation determined by an isometric action ona compact manifold is finite
dimensional.

Proof. Let F be a Killing foliation defined on a compact manifoldM induced by an isometric action
Φ : G × M → M whereG is a Lie group. Without loss of generality we can suppose thatthe Lie group
G is a connected one (cf. Lemma1.1.1). We fix a tamer groupK. We know thatG is normal inK and
the quotient groupK/G is commutative (cf. Proposition1.1.2).

Let us consider the following statement
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A(U,F ) = “The BIC IH
∗

p
(U/F ) is finite dimensional for each perversityp,”

whereU ⊂ M is a K-invariant submanifold. We proveA(M,F ) by induction on dimM. The result is
clear when dimM = 0. We supposeA(W,F ) for any K-invariant compact submanifoldW of M with
dimW < dim M and we proveA(M,F ). We proceed in several steps.

First step: 0-depth. Let us suppose depthSK,M = 0. SinceG ⊳ K andKx is conjugated toKy thenGx

is conjugated toGy, ∀x, y ∈ M. We get that the foliationF is a (regular) riemannian foliation (cf. [7]).
Its BIC is just the basic cohomology (cf.2.3). ThenA(M,F ) comes from [4].

Second step: InsideM. Let us suppose depthSK,M > 0. The family
{
M\Smin,Tmin

}
is a basic covering

of M and the we get the exact sequence (cf.2.5)

0→ Ω
∗

p
(M/F )→ Ω

∗

p

((
M\Smin

)
/F
)
⊕ Ω

∗

p

(
Tmin/F

)
→ Ω

∗

p

((
Tmin\Smin

)
/F
)
→ 0.

The Five Lemma gives

A(Tmin\Smin,F ), A(Tmin,F ) and A(M\Smin,F ) =⇒ A(M,F ).

SinceTmin\Smin is K-diffeomorphic toDmin×]0, 1[ (cf. (cf. 4.1)) thenA(Dmin,F ) =⇒ A(Tmin\Smin,F ).
The inequality dimDmin < dim M gives

A(Tmin,F ) and A(M\Smin,F ) =⇒ A(M,F ).

In order to proveA(Tmin,F ) it suffices to proveA(T,F ) where (T, τ,S,Rm) a K-invariant tubular
neighborhood of closed stratumS of SK,M . Following Proposition4.3.1we have

A(Rm,N) =⇒ A(T,F ) =⇒ A(Tmin,F ).

Consider the orthogonal decompositionRm
= R

m1 × Rm2, whereRm1 = (Rm)Gx. The only fixed point
of the restrictionΛx : Gx × R

m2 → Rm2 is the origin. So, there exists a Killing foliation9 G on the sphere
S

m2−1 with (Rm1 × Rm2,F ) = (Rm1 × cSm2−1,I × cG). Propositions2.6and2.7give:

A(Sm2−1,G) =⇒ A(Rm1 × cSm2−1,I × cG) =⇒ A(Rm,N).

Finally, since dimSm2−1 < m≤ dimT ≤ dim M we have

(10) A(M\Smin,F ) =⇒ A(M,F ).

Third step: Blow-up. Let us suppose depthSK,M > 0. The family
{
L−1(M\Smin),L

−1(Tmin)
}

is a basic

covering ofM̂ and the we get the exact sequence (cf.2.5)

0→ Ω
∗

p

(
M̂/F̂

)
→ Ω

∗

p

(
L−1(M\Smin)/F̂

)
⊕Ω

∗

p

(
L−1(Tmin)/F̂

)
→ Ω

∗

p

(
L−1(Tmin\Smin)/F̂

)
→ 0.

Following4.2 we have that

- L−1 (M\Smin

)
is K-diffeomorphic to two copies ofM\Smin,

- L−1 (Tmin

)
is K-diffeomorphic toDmin×] − 1, 1[,

- L−1 (Tmin\Smin

)
is K-diffeomorphic toDmin × (] − 1, 0[∪]0, 1[).

9It is given by the orthogonal actionΛx : Gx × S
m2−1→ Sm2−1.
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Now, the Five Lemma gives

A(Dmin, F̂ ) and A
(
M̂, F̂

)
=⇒ A(M\Smin,F ).

But, the inequality dimDmin < dim M gives

(11) A
(
M̂, F̂

)
=⇒ A(M\Smin,F ).

Forth step: Final blow-up. When depthSK,M = 0 we getA(M,F ) from the First step. Let us
suppose depthSK,M > 0. From (10) and (11) we get

A
(
M̂, F̂

)
=⇒ A(M,F ).

with depthS
K,M̂
< depthSK,M (cf. (9)). By iterating this procedure we get

A
(
M̃, F̃

)
= A


·̂··

M̂,

·̂··

F̂

 =⇒ · · · =⇒ A
(
M̂, F̂

)
=⇒ A(M,F ),

with depthS
K,M̃
= 0. We finish the proof by applying again the First Step. ♣
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