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Abstract

We prove that the basic intersection cohomolog;(M/ﬁ‘—'), where¥ is the singular foliation
determined by an isometric action of a Lie graBn the compact manifoli, is finite dimensional.

This paper deals with an actiegh: G x M — M of a Lie group on a compact manifold preserving
a riemannian metric on it. The orbits of this action definergsiar foliation¥ on M. Putting together
the orbits of the same dimension we get a stratificatioMofThis structure is still very regular. The
foliation ¥ is in fact a conical foliation and we can define the basic geetion cohomolog#l;(M/T)
(cf. [10]). This invariant becomes the basic cohomolétyM/F) when the actio® is almost free, and
the intersection cohomology;(M/G) when the Lie grous is compact.

The aim of this work is to prove that this cohomololjié(M/T) is finite dimensional. This result
generalizes] (almost free case),l[\] (abelian case) and. []] (compact case).

The paper is organized as follows. In Section 1 we presenfolfaion . The basic intersection
cohomolog)H;(M/T) associated to this foliation is studied in Section two. Tedsproducts are studied
in Section 3. The finiteness H;(M/T) Is proved in Section 4.

In the sequeM is a connected, second countable, Haugsdeithout boundary and smooth (of class
C*) manifold of dimensiomm. All the maps are considered smooth unless something eilsgicated.

1 Killing foliations determined by isometric actions.

We study in this work the foliations induced by isometridaws: theKilling foliations. These foliations
are examples of the conical foliations for which the basiensection conomology has been defined (see
[10, 11]). We present this geometrical framework in this section.
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1.1 Killing foliations. A smooth actiond: G x M — M of a Lie groupG on a manifoldM is a
isometric actiorwhen there exists a riemannian mejrion M preserved by.

The connected components of the orbits of the achatetermine a partitios on M. In fact, this
partition is a singular riemannian foliation that we shalll &illing foliation (cf. [7]). Notice thatF
is also a conical foliation in the sense af) 11]. Classifying the points oM following the dimension
of the leaves off” one gets thestratificationS,_ of . It is determined by the equivalence relation
X~y & dimG, = dimG,. The elements o, are calledstrata

In the particular case where the closureoh the isometry group of\l, 1) is a compact Lie group
we shall say that the actioh is atame action In fact, a smooth actio®: G x M — M is tame if and
only if it extends to a smooth actiah: K x M — M whereK is a compact Lie group containirgg (cf.
[6]). The groupK is not unique, but we always can chodéen such a way thaG is dense irK. We
shall say thaK is atamer group Here the strata d, areK-invariant closed submanifolds ®.

Since the aim of this work is the study $f and not the actiod itself, we can consider that the Lie
groupG is connected. Let us see that.

Proposition 1.1.1Let®: Gx M — M is a tame action. Let g&be the connected component of G
containing the unity element. The Killing folation defingctie restrictiond: Gog x M — M is also¥ .

Proof. The partitions is defined by this equivalence relation:
X ~y <= 1 continuous patl: [0, 1] — G(x) such that(0) = xanda(1) = y.

Since the mapy: G — G(X), defined byA(g) = ®(g, X) = g- X, is a submersion (see for exampig)[
then
X ~y < 1 continuous patg: [0,1] — G such thap(0) = eandp(1) - x =,

and by definition of5q
X ~y < 1 continuous patlg: [0, 1] — G, such thap(0) = eandp(1) - x =Y.
This gives the result. *

WhenG is connected, the tamer grotphas richer properties.

Proposition 1.1.2 Let G be a connected Lie subgroup of a compact Lie group K. #f@nse in K then
G <K and the quotient group G is commutative.

Proof. The Lie algebray is Adg- invariant and hence, by density, Adnvariant. Theny is an ideal of
t. The connectedness Gfgives thaiG is a normal subgroup df. Since Ad; acts trivially ont/g, Ad ¢
acts trivially, too. Thereford/g is abelian (see for examplg,[pag. 628]). *

1.2 Particular tame actions. A trio is a triple K, G, H), with K is a compact Lie groug; a normal
subgroup oK andH a closed subgroup df. We present now some tame actions associated to a trio
(K, G, H). They are going to be intensively used in this work. Firsalbive need some definitions.

- The actiond;: Kx K — K is defined byd,(g, k) = g- k. For each elementof the Lie algebra of
K, we shall writeX" the associated (right invariant) vector field. It is defingd(k) = TeR«(u)
whereRy: K — K is given byRy(¢) = ¢ - k.

1This is always the case when the maniftédds a compact.
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- The action®, : K x K — K is defined by®,(g,k) = k- g. For each element € t of K, we
shall write X, the associated (left invariant) vector field. It is definedXk) = —T.L«(u) where
Lx: K = Kis given byLy(¢) = k- ¢.

- The action¥: K x K/H — K/H is defined by¥(g,kH) = (g - K\H. For each elemeni € f,
we shall writeY,, the associated vector field. Since the canonical projeeiiod — K/H is a
K-equivariant map, then we haweX" =Y, for eachu € t.

- The actionl": H x H — H is defined byl'(g, h) = g- h. For each element of the Lie algebra of
H we writeZ" the associated (right invariant) vector field.
The associated actions we are going to use are the following.
(a) The restrictiond,: G x K — K, which induces the regular Killing foliatio.

(b) The restrictiond, : G x K — K, which induces the regular Killing foliatio.

SinceG <« K, the foliation’K is determined by the family of vector fieldX" / u € g}, whereg is the Lie
algebra ofG, and also by the familyX, / u € g}. The orbitsG(k) = Gk = kG have the same dimension
dimG.

(c) The restriction¥: G x K/H — K/H, which induces the regular Killing foliatiof.

The foliation® is determined by the family of vector field¥, / u € g}. The orbitsG(kH) have the same
dimension dinG — dim(G N H).

(d) The restriction": (G N H) x H — H, which induces the regular Killing foliatio@.

The foliationC is determined by the family of vector fieldg" / u € g N h}. The orbits G N H)(k) have
the same dimension ditG(n H).

(e) The restrictiond, : GH x K — K, which induces the regular Killing foliatio&.

Notice thatGH is a Lie group sincé is normal inK. The foliation& is, in fact, determined by the
vector fieldg(X, / u € g+ b}. The orbits GH)(k) have the same dimension d&+ dimH —dim(G N H).

1.3 Twisted product. In order to prove the finiteness of the basic intersectioronudiogy we de-
compose the manifold in a finite number of simpler pieces s€lae the twisted products we introduce
NOw.

We fix a trio (K, G, H) and a smooth actio®: H x N — N of H on the manifoldN. Thetwisted
productis the quotienKx,N of K x N by the equivalence relatiot,@) ~ (k- h™,0(h,2) = h-2). The
element oK, N corresponding tok| z) € K x N is denoted by k, z >. This manifold is endowed with
the tame action

®: G x (Kx,N) — (Kx,N),
defined byd(g, < k,z>) =< g- k,z>. We denote byl the induced Killing foliation.
We also use the following tame action, namely, the restmcti

®:(GNH)xN—>N

whose induced Killing foliation is denoted hy.
The canonical projectiol: K x N — K xy N relates the involved foliations as follows:
(a) I.(K x I) = W, whereT is the pointwise foliation (since the mapis G-equivariant).
(b) S, ={I(KxS)/SeS,}=N({K} xS,) (sinceGz = k(G n H)k™).
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2 Basic Intersection cohomology

In this section we recall the definition of the basic intet®e? cohomology and we present the main
properties we are going to use in this work. For the rest of slgiction, we fix a conical foliatiof
defied on a manifold/. The associated stratificationgs. The regular stratum of is denoted Ry. We
shall writem=dimM, r =dim# ands=m-r = codimy .

We are going to deal with fferential forms on a product (manifold)0, 1[P, they are restrictions of
differential forms defined on (manifold) — 1, 1[P.

2.1 Perverse forms. Recall that aconical chartis a foliated difeomorphisn¥: (R™"?1 x cS", H x
cG) — (U,Fy) where R™"1 H) is a simple foliation and{", G) is a conical foliation without O-
dimensional leaves. We also shall denote this charthy(S) whereS is the stratum of_ verifying
PR™ I x(9}) =UNS.

The diterential compleﬂ;(M % [0, 1[P) of perverse formsf M x [0, 1[P is introduced by induction
on depthS_. When this depth is O then

IT_(M % [0,1[°) = Q' (M x [0, 1[").

Consider now the generic case. A perverse fornMok [0, 1[P is first of all a diferential form
w € Q' (Rr x [0, 1[P) such that,

the pull-back € x Tp.ap)'w € Q' (R™"1 x R x]0, 1[x[0, 1[")
extends to w, € I‘I;XCQ(R”H“1 x S"x [0, 1[P+1)

for any conical chartl, ¢), wherel, stands for the identity map. Notice th@t(M) is included on
I1_(M)3.
F

2.2 Perverse degree. The amount of transversality of a perverse farne H;(M) with respect to a
singular stratun$ € S, is measured by the perverse degfeg,. We recall here the definition of local
perverse degreiul|, € {—co} U N of w relatively to a conical charlj, ¢, S):

1. |lwll, = —co whenw, =0 onRM™ M1 x R, x {0},

2. |lwll, < p, with p € N, whenw, (Vo, . .., Vp, =) = 0 where the vectorly, . . ., vp} are tangent to the
fibers of P, : R™ "' x R, x {0} — U N S*.

This number does not depend on the choice of the conical @fafi. 1, Proposition 1.3.1]). Finally, we
define theperverse degrefw||, by

lwlly = SUp{IlwllU / (U, ¥, S) conical chart}.

The perverse degree afe Q (M) verifies|lw|l, < 0 for any singular stratur8 € S, (cf. 2.1).

2We refer the reader ta [],[11] for details.
3Through the restriction - w,, .

“The mapP, : R™™1 x 5" x [0, 1[—> U is defined byP. (x.y. 1) = £( [y. t]).
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2.3 Basic cohomology The basic cohomology of the foliatiof is an important tool to study its
transversal structure and plays the role of the cohomabdglye orbit spacé/#, which can be a wild
topological espace. A fierential formw € Q (M) is basicif ixw = ixdw = 0, for each vector fielX on

M tangent to the foliatiosF. For exemple, a functiofi is basic ff f is constant on the leaves %f. We
shall writeQ (M/¥) for the complex of basic forms. Its cohomology(M/¥) is thebasic cohomology
of (M, ). We also use theelative basic cohomology (M, F)/¥), that is, the cohomology computed
from the complex of basic forms vanishing on the saturate& se M. The basic cohomology does not
use the stratificatios,, .

2.4 Basic intersection cohomologyA perversityis a mapp: S; — Z U {—00, 00}, whereSZ is the
family of singular strata. Theonstant perversityis defined byi(S) = ¢, wherer € Z U {—o0, co}.

The basic intersection cohomology appears when one cassidsic perverse forms whose perverse
degree is controlled by a perversity. We shall put

Q (M/F) = {w € IT_(M) / wis basic and mafflwll,, lldwll,) < (S) VS €S’}

the complex of basic perverse forms whose perverse degndélf{at of the their derivative) is bounded
by the perversityp. The cohomolog;H;(M/T) of this complex is thébasic intersection cohomology
of (M, F) relatively to the perversity.

Consider a twisted produétx,, N. Perversities oiKx,,N andK x N are determinate by perversities
onN by the formula (cf.1.3(b)):

(1) P(K x S) = pII(K x S)) = P(S).

2.5 Mayer-Vietoris. This is the technique we use in order to decompose the nidiifoicer pieces.
An open coverindgU, V} of M by saturated open subsets isasic coveringlt possesses a subordinated
partition of the unity made up of basic functions defined\dr{see P]). For a such covering we have
the Mayer-Vietoris short sequence

0—Q (M/F) - Q(U/F)@Q(V/F) - Q((UNV)/F) -0,

where the map are defined y— (w, w) and @, B) — a—B. The third map is onto since the elements of
the partition of the unity areontrolled functionsid est, elements cm;(—) (cf. 2.2). Thus, the sequence
is exact. This result is not longer true for more general dogs.

We shall use in this work the two following local calculateofsee [ 1, Proposition 3.5.1 and Propo-
sition 3.5.2] for the proofs).

Proposition 2.6 Let (R, H) be a simple foliation. Considgs a perversity on M and define the per-
versity p onRK x M by P(R* x S) = P(S). The canonical projectiopr : RK x M — M induces the
isomorphism

H_(M/F) = H_(R* x M/H x F).
Proposition 2.7 Let G be a conical foliation without O0-dimensional leaves on tpbeseS". A per-
versityp on 8" gives the perversitp onS" defined byp(S) = P(Sx]0, 1[). The canonical projection
pr: S"x]0, 1[— S" induces the isomorphism

H (8"/6) ifi <P(19)

H_(cs"/cG) = { 0 ifi > p({9)).

5BIC for short.
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In the next section we shall need the following technical bean

Lemma 2.8 Let®: K x M — M be a smooth action, where K is a compact Lie group, and let ¥ be
fundamental vector field of this action. Consider a normé&igoup G of K and writef the associated
conical foliation on M. Then, the interior operatay:i Q%(M/?—”) — Q;’l(M/T) is well defined, for any
perversityp.

Proof. Since the question is a local one, then itfimes to consider wher® is a twisted product
Kx,,N°. Notice that the blow upl: K x N — Kx,N is a K-equivariant map relatively to the action
t-(k,2) = (¢ -k, 2). This givesIl.(X",0) = V for someu € . From Lemma3.1we know that it sffices
to prove that the operator

ixu0): (K X N/K x N) — Q" (K x N/K x N)

is well defined. Sincé& < K then the vector fielKY preserves the foliatiok'. So, it sufices to prove
that the operator .
i(xv.0): Q;(K x N) — Q;‘ (K x N)

is well defined. This comes from the fact thét acts on theK-factor while the perversion conditions
are measured on thé-factor (cf. (L)). *

3 The BIC of a twisted product

We compute now the BIC of a twisted produck,, N (cf. 1.3) for a perversityp (cf. (1)).

Lemma 3.1 The natural projectioril: K x N — Kx,,N induces the gierential monomorphism

(2) I Q;(KXH N/W) — Q;(K X N/K x N).

Moreover, given a dferential formw on Kx,,Ryy, we have:

(3) MTw e Q;(K XN/KxN) = we Q;(KxH N/W).

Proof. Notice that the injectivity ofI* comes from the fact thai is a surjection. For the rest, we proceed

in several steps.

(a) A foliated atlas forr: K — K/H.

Sincer: K — K/H is aH-principal bundle then it possesses an affas {90: aU) — U x H}
made up withH-equivariant chartsp(k - h™!) = (7(k), h - ho) if ¢(k) = (n(k), ho). We study the foliation
¢, K. This equivariance property givesX, = (0, Z") for eachu € g N . Thus, the trace of the foliation
¢, K on the fibers of the canonical projection pg:x H — U isC. On the other hand, since the map
is aG-equivariant map then, X = D, which gives pt ¢.K = D. We conclude tha®, K c D x C. By
dimension reasons we getK = D x C. The atlasA is anH-equivariant foliated atlas of.

(b) A foliated atlas forll: K x N — Kx,N.

8In fact, N is an euclidean spa@ et ® is an orthogonal action.
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We claim thatA, = {@: at(U)x,N—UxN/ (U e ﬂ} is a foliated atlas oKx,N where the
mapy is defined byp(< k, z>) = (n(K), (O((¥~1(r(K), €)1 - k, 2))). This map is a dfeomorphism whose
inverse is? (u,2) =< ¥-X(u, €), 2 >. It verifies

W QG IL(K x T) = BuIL (L x T ) (D x C x T).

A straightforward calculation showsITo(¢1 x 1) = (Iy x0). SinceC is defined by the actioh then
0.(C x I) = N. Finally we obtaire, W = D x N.

(c) Last Step
Given U, ¥) € Ay, we have the commutative diagram

¢ IXIN

UXHXN——>KXxN

Q| |n

UxN a Kx, N

whereQ(u,h,2) = (u,h™t-2), 1 1(Im 5_1) =1Im (90‘1 X I N) and the rows are foliated imbeddings. Now,
since @) and @) are local questions then it fices to prove that

- Q' Q;(U X N/D x N) — Q;(U x H x N/D x C x N) is well-defined, and

- Quwe Q;(U XHXN/DXCXxN) = wEe Q;(U x N/D x N), foranyw € Q' (U x Ry).

This comes from the fact that the map
ViUXHXN,DXCXN)— (UXxHXN,DXCxN),

defined byV(u, h,2) = (u,h,h™* - 2)), is a foliated difeomorphismandQ = pr, oV, with pry: U x H x
N — U x N canonical projection (cf. Propositi¢h6). *

3.2 The Lie algebrat. We suppose in this paragraph that tats also dense oK. Chooser a
bi-invariant riemannian metric ok, which exists by compactness. Consider

B:{Ul,---ua,ua+l,---,Ub,ub+l,---,uc,uc+1,---,uf}

an orthonormal basis of the Lie algelbraf K with {uy,...u,} basis of the Lie algebrg of G and
{Uas1, - . - Uc} basis of the Lie algebra of H. For each indice & i < f we shall writeX; = X, and
X = X4 (cf. 1.2).

Lety; € Q'(K) be the dual form ok, that is,y; = ix,v. Notice that;; = y;(X). These forms are
invariant by the left action oK. Since the flow ofX! is the multiplication on the left by exp() then
Lxiyi =0foreach 1< j < f.

f
For the diferential, we have the formubly, = Z Ci,7i A yj, where [, X|] = Z Ci; %, and 1<
1<i<j<f =1
i, j,I < f. We have several restrictions on thesefioents. Sinces <« K theng is an ideal off and
therefore we have

C;=0fori<b<l.

’SinceGNH <H.
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SinceK/Gis an abelian group (cf. Propositidnl.2 then the induced bracket éfy is zero and therefore
we have
C;=0forb<i,jl<f.

These equations imply that
4) dy, = 0 for eachb < I.

The &-basic diferential forms inA (ya,...,v:) are exactlyA (ye.1,...,y:) since they are cycles
and the family{ Xy, ..., X;} generates the foliatiofi. This gives

(5) H(K[E) = \ Goste . 70).

3.3 Two actions ofH/H,. The Lie groupH preserves the foliatio® since the Lie groui N H is a
normal subgroup of. PutH, the connected componentldfcontaining the unity element. Since itis a
connected compact Lie group then a standard argument shatvs t

Ho

(6) (H,N/M)™ = H ((@,0N/M)™) = HL N/

(cf. [5, Theorem I, Ch. IV, vol. 11]). We conclude that the finite gpd/Hg acts naturally orH;(N/N).

SinceHy is a connected Lie subgroup GH then(H"(K/S))Ho = H (K/&). We conclude that the
finite groupH/H, acts naturally o (K/&).

Proposition 3.4 Let (K, G, H) be a trio with G connected and dense in K. Then
H. (K N/W) = (H'(K/8) @ H (N/A)) .

Proof. Using the blow udl: K x N — Kx,N, the computation oH ;(KxH N/W) can be done by using
the complex Im{H*: Q;(KxHN/T) — Q;(K x N/K x N)} (cf. Lemma3.1). We study this complex
in several steps. We fi = {ul, e, uf} an orthonormal basis dfas in3.2.

(iy Description of Q (K x Ry).
A differential formw € Q (K x Ry) is of the form

(7) Nt D, Ya A AV AT i

1<ig<<ig<f

1Si1<---<igﬁ f.
(iiy Description of IT__ (K x N).

Since the foliatiorK is regular then we always can choose a conical chart of time fdg x U,, ¢; X
¥,) where U4, ¥1) is a foliated chart ofK, K) and U, ¥,) is a conical chart ofl{, V). The local blow

up of the charty; x U,, ¥, x ¢,) is constructed from the second factor without modifying finst one.
So, the diferential formsy; are always perverse forms and d@eliential formw € H;XN(K x N) is of

-----------

1Si1<---<igﬁf.
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(i ) Description of Q' (K x Ry /K x N).

Takew € Q' (K x Ry/K x N). SinceX is generated by the familyX; / 1 < j < b} then Lxyw=0
forany 1 < j < b, or equivalentlyRw = w for eachg € G sinceG is connected. By density,
Rw = w for eachk € K and thereford.x,w = 0 for any 1< j < f sinceK is connected. We
conclude that x;7 = Lxmi,..., = Oforany 1< j < f and each 1< i; < --- < i, < f. This gives

w € /\*(')’1, .. ,'}’f) ® Q*(RN)
The N-basic diterential forms o2’ (Ry) are exacthyQ (Ry/N). TheK-basic diferential forms of

N (1, ...,ys) are exactly\ " (yp:1, - - - » v¢) (cf. (4)). From these two facts, we get

QKX Ry/KXN)= N\ (s -, v1) @ Q (Ry/N)

as diferential graduate commutative algebras.
(iv) Description on;(K X N/K x N).

From iy and(iii ) it suffices to control the perverse degree of the forms

n+ Z Yie N NYip Ay, iee/\ (7b+1,---,7f)®H;(N)-
b+1<ii<-<ip<f

ConsiderS a stratum ofS,,. From|lyillkxs = 0 andlinllkxs = IInlls, we getllyi, A ...y, Amiy_illkxs =
I7i,....i,|ls. We conclude that

QKX NKXN) = [\ e 70) 8 Q(N/N)
(cf. 1.3(b)).
(v) Description of Im {H*: Q (Kx,N/F) — Q_ (K x N/%K x N)}.
We denote by{W,.1,..., W} the fundamental vector fields of the actian H x N — N asso-
ciated to the basi$ua,1,...,Uc}. Consider now the actioff: H x (K x N) — (K x N) defined
by T(h, (k,2) = (k- h,0(h 2). Its fundamental vector fields associated to the basis, ..., U}

are {(Xaz1, Was1), ..., (X, Wp)}. Givenh € H, we takeY},: K x N — K x N the map defined by
Th(k, 2) = Y(h, (k,2). Then, we have

() ixw = -iwwifa<i<c}
IMIT" =3w € /\*(yb+1,...,7f)®Q;(N/N)/ (i) Lyw = -Lwwifa<i<c},
(iii) (Yh)'w = wforh e H.

Let Hy be the unity connected componenttdf Recall that the subgroufy is normal inH and that the
qguotientH/Hg is a finite group. Conditions (ii) gives that is Hp-invariant. So, condition (iii) can be
replaced by: (iv) 1) w = w for h € H/Hq. Therefore

. * (i) ixw = —iwwifa<i<c
IMIT={we A (ybﬂ,...,yf)@szﬁ(N/N)/ i _ _
(i) Lyw = -Lwwifa<i < c}.

Since the groupi/Hy is a finite one, we get that the cohomoldgy(Im I1*) is isomorphic tc(H"(A‘))H/Ho ,
whereA* is the diferential complex

. . () ixw=-iywwifa<i<c}

we/\ (7b+1,---,7f)®QP(N/N)/ y , ,

(i) Lyw = -Lwwifa<i<c}

So, it remains to computd (A). This computation can be simplified by using these threefact
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- iww = Lyw = 0 for eacha < i < b, since the foliationV is defined by the action & N H.
- ixy; = ¢ forall i, j (cf. 3.2).
- dy; =0forb < j (cf. (4)).

We get thatA® is the diferential complex

. ) (i) ixw = —iwwif b<i<c}
{w € /\ (')/b+1,...,')/f)®Qp(N/N)/ }

(i) 0 = Lywif b<i<c)
. . ) (i) ixw = —iwwif b<i<c
A (yc+1,...,yf)®{w e\ (ym,...,yc)@szﬁ(N/N)/ }

(i) 0 = Lywif b<i<c)

B*
A straightforward computation gives that the canonicatiwgiof a formw € A*(yps1, - - - ,yc)®Q;(N /N)
verifying (i) is
(8) w=wo+ D (% A Ay A, - iw, wo)

b<iy<-<ig<c

for somewp € Q (N/N) (cf. Lemma2.8).
Consider nowb < i, j < c. SinceK/G is an abelian group (cf. Propositidnl.2 andH is a Lie group

b
then W, Wj] = Z Ci'jV\/|. Then,i[W,,Wj]wo = 0 since the foliationV is defined by the action @& N H.

l=a+1
So, the canonical writing of a form € B* is (8) for somewy € {77 € Q;(N/N) /Lwn=0ifb<i< c} =

N H
(Q(N/A)) ™.
Then, the operatax: B* — (Q;(N/N))H0 , defined byA(w) = wy, is a dtferential isomorphism. We

conclude that the élierential compleXA* is isomorphic toA " (vei1, - - ., V) ® (Q;(N/N))H0 and therefore

H (A) = H(K/E) ® H;(N/N) (cf. (5) and @)). Since the operatok is (H/Ho)-equivariant (cf.3.3)
then we get

HLEOGN/W) = m I = (HTGA))™ = (W (Kre) @ HLN/)) ™
This ends the proof. .
3.5 Remarks.

(&) When the Lie grous is commutative therK is also commutative. Bierential formsy, are
. H .
K-invariants on the left and on the right, @6 (K/S)) = H (K/&) and therefore

H (K, N/W) = H (K/€) & (H_(N/N))

* * H
"= H(K/&) @ (H(N/N))
as it has been proved in], Proposition 3.8.4].

(b) Since the foliatior® is a riemannian foliation defined on a compact manifold therkmow that
the cohomology’ (K/&) is finite (cf. [4]). So, the finiteness d‘IfI;(KxH N/W) depends on the finiteness

of H' (N/N).
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4 Finiteness of the BIC

We prove in this section that the BIC of a Killing foliation ancompact manifold is finite dimensional.
First of all, we present two geometrical tools we shall usthaproof: the isotropy type stratification
and the Molino’s blow up.

We fix an isometric actio®: Gx M — M on the compact manifoltfl. We denote by the induced
Killing foliation. For the study off we can suppose th& is connected (see Lemnial.l). We fix
K a tamer group. Notice that the gro@is normal inK and the quotienK/G is commutative (cf.
Propositionl.1.2).

4.1 Isotropy type stratification. Theisotropy type stratificatiors, ,, of M is defined by the equiva-
lence relatiof:
X ~y & Ky is conjugated td,.

When depths,,, > 0, any closed straturg € S, is a K-invariant submanifold oM and then it
possesses l-invariant tubular neighborhood (7, S,R™) whose structural group ©(m). Recall that
there are the following smooth maps associated with thigheirhood:

+ Theradius mapo: T — [0, 1] defined fiberwise from the assignationt] +— t. Eacht # Ois a
regular value of the. The pre-image~1(0) is S. This map isK-invariant, that isp(k - 2) = p(2).

+ Thecontraction H: T x [0,1] — T defined fiberwisely from §,t],r) — [x,rt]. The restriction
H.: T — T is an embedding for eadh# 0 andHy = 7. We shall writeH(z t) = t-z This map is
K-invariant, thatist- (k-2 = k- (t - 2).

The hyper-surfac® = p~1(1/2) is thetubeof the tubular neighborhood. It isk-invariant submanifold
of T. Notice that the map
V:Dx[0,1[— T,

defined byV(z t) = (2t) - zis aK-equivariant smooth map, whekeacts trivially on the [Q1[-factor. Its
restrictionV: Dx]0, 1[— T\S is aK-equivariant difeomorphism.

DenoteS_ the union of closed (minimal) strata and chodse a disjoint family of K-invariant
tubular neighborhoods of the closed strata. The union af@ated tubes is denoted By . Notice that
the induced may_ : D_ x]0,1[— T_ \S _ is aK-equivariant difeomorphism.

min min min min

4.2 Molino’s blow up. The Molino’ blow up [7] of the foliation# produces a new foliatioff of the
same kind but of smaller depth. We suppose dehth > 0. Theblow upof M is the compact manifold

M ={(D,x1 - 1.10) | [((M\s,,) x {-1.1})}/ ~.

where ¢ t) ~ (V_ (z [t]), t/|t]), and the map_: M — M defined by

) = Vi@ ) ifv=(zt) €D, x]-11[
V)= z if v=(z ) e (M\S_)x{-1,1}.

Notice that£ is a continuous map whose restrictigh M\£(S is a K-equivariant

smooth trivial 2-covering.

min) - M\Smin

8For notions related with compact Lie group actions, we réfereader toT].
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Since the mapv_ is K-equivariant thenb induces the actio: K x M — M by saying that
the blow-up£ is K-equivariant. The open submanifolds*(T,,) and £L7(T,,\S,,) are clearlyK-
diffeomorphic tdD_ x] — 1,1[andD,, x (] — 1, 0[U]0, 1[) respectively.

The restrictiond: Gx M — M is an isometric action witi as a tamer group. The induced Killing
foliation is 7. Foliations# and ¥ are related by which is a foliated map. Moreover, 8 is a not

minimal stratum o5, ,, then there exists an unique strat@me S__ such thatL(S) c S’. The family
{S"/Ses, ) coversM and verifies the relationshiB; < S, < S| < S,,. We conclude the important
property

min

(9) depthsm < depths,,,.

4.3 Finiteness of a tubular neighborhood We suppose depti,,, > 0. Consider a closed stratum
Ses,,. Take [, 7,S,R™) aK-invariant tubular neighborhood. We fix a base poirtS. The isotropy
subgrou, acts orthogonally on the fib&™ = 7-1(x). So, the induced actiof,: G, x R™ — R™is an
isometric action, it gives the Killing foliatiow on R™.

Proposition 4.3.1 If the BIC of(R™, N) is finite dimensional then the BIC {F, ¥) is also finite dimen-
sional.

Proof. We proceed in two steps.

(@) Ky = Ky foreach ye S.

The canonical projection: S — S/K is an homogeneous bundle with fib€fK,. For any open
subsetvV c S/K the pull backrt2~1(V) is a K-invariant subset oT, then we can apply the Mayer-
Vietoris technics to this kind of subsets (f5).

Since the manifol&/K is a compact one then we can find a finite good covellthg i € 1} of it (cf.

[2]). An inductive argument on the cardinality bfreduces the proof of the Lemma to the case where
T = 127Y(V), whereV is a contractible open subset$fK.

Here, the manifold is K-equivalently difeomorphic tov x (KxKXR’“), whereK does not act on the
first factor. So, the natural retraction \éfto a point gives &-equivariant retraction of to the twisted
productkx, R™. Now the result comes directly froB15(b) since K, G, K,) is a trio.

(b) General case

The stratuns is K-equivariantly difeomorphic to the twisted produktx,,, ,F whereN(Ky) is the
normalizer ofK, onK andF = SKx. So, the tubular neighborhoddis K-equivariantly difeomorphic
to the twisted produd€x,,, N whereN is the manifoldr—1(F). The previous case gives that the BIC of
(N, Fn) is finite dimensional. Now the result comes directly fr8rG(b) since K, G, N(Ky)) is a trio. &

The main result of this work is the following

Theorem 4.4 The BIC of the foliation determined by an isometric actiorm@ompact manifold is finite
dimensional.

Proof. Let ¥ be a Killing foliation defined on a compact manifol induced by an isometric action
®: Gx M — M whereG is a Lie group. Without loss of generality we can supposetti@at.ie group
G is a connected one (cf. Lemmal.l). We fix a tamer groufK. We know thaiG is normal inK and
the quotient grouK/G is commutative (cf. Propositioh.1.2).

Let us consider the following statement
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AU, 7) ="“The BIC H;(U/T) is finite dimensional for each perversipy’

whereU c M is aK-invariant submanifold. We prov#(M, ¥) by induction on diniM. The result is
clear when dimM = 0. We suppos@(W, F) for any K-invariant compact submanifoM/ of M with
dimW < dim M and we provel(M, 7). We proceed in several steps.

First step: 0-depth. Let us suppose depth, ,, = 0. SinceG <K andKj is conjugated td, thenGy
is conjugated t&y, Vx,y € M. We get that the foliatiorr is a (regular) riemannian foliation (cf.7]).
Its BIC is just the basic cohomology (&.3). Then2(M, ) comes from {].

Second step: InsideM. Let us suppose depty, ,, > 0. The family{M\S_,, T . } is a basic covering
of M and the we get the exact sequence 2c5)

0 - Q(M/F) - Q(M\S,,) /F) & Q(T,./F) = Q((T,,,\S,,) /F) = O.
The Five Lemma gives

Q’[(T \Smin’7:)’ s)’I(Tmin’yr) and Q’[(I\/I\Smin’7:) Ead QI(M, 7:)

min

SinceT,,\S,,, is K-diffeomorphic toD,, x]0, 1[ (cf. (cf. 4.1)) thenA(D,,,F) = A(T,,\S,... 7)-
The inequality dinD__ < dim M gives

AT, F) and AM\S,_, F) = AM, F).

min? min?

In order to provel(T . ,¥) it suffices to prove(T,F) where T, 7, S,R™) a K-invariant tubular
neighborhood of closed stratugof S, ,,. Following Propositiont.3.1we have

ARMN) = AT, F) = WT,,.F).

Consider the orthogonal decomposititfi = R™ x R™, whereR™ = (R™)®*. The only fixed point
of the restrictionA,: G, x R™ — R™ is the origin. So, there exists a Killing foliatidi&7 on the sphere
SMe-L with (R™ x R™, F) = (R™ x ¢S™, T x ¢G). Proposition®.6and2.7 give:

AS™ ™, G) = AR™ x cS™ ™, 7 x c@) = AR™, N).
Finally, since dinf™ ! < m< dimT < dimM we have

(10) AM\S_, F) = AM, F).

min?

Third step: Blow-up. Let us suppose depth,,, > 0. The family{L‘l(M\Smm), L‘l(Tmm)} is a basic
covering ofM and the we get the exact sequence 2c%)

0 Q (M/F) > Q (LHMS,)/F) e Q(LNT,)/F) > QL NT,\S,)/F) = 0.
Following 4.2 we have that

- £71(M\S,,) is K-diffeomorphic to two copies df1\S

min?

- £73(T, ) is K-diffeomorphic tdD_ x] — 1, 1],

min

- L7Y(T,\S,,,) is K-diffeomorphic taD,, x (] - 1,0[U]0, 1[).

91t is given by the orthogonal actiofl,: Gy x S™~1 — sM-1,
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Now, the Five Lemma gives

AD,,.F) and A(M,F) = AM\S,,. F).

But, the inequality dinD_ < dimM gives
(11) A(M,F) = AM\S,,,. F).

Forth step: Final blow-up. When depths,,, = 0 we getl(M, ¥) from the First step. Let us
suppose dept§, ,, > 0. From (L0) and (1) we get

A(M,F) = AM. 7).
with depthSK’M < depths,,, (cf. (9)). By iterating this procedure we get

A(M, F) :QI[M?) - = 91(@,7’-:) = A(M, F),

with depthsm = 0. We finish the proof by applying again the First Step. *
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