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José Ignacio Royo Prieto§

University of the Basque Country UPV/EHU

Martintxo Saralegi-Aranguren¶

Université d’Artois

Abstract

Given a smooth action of S
3

on a manifold M, we are interested in the relationship between the

cohomologies of M and M/S
3

. If the action is free, we have indeed a principal S
3

-bundle, and this

relationship is described by the classical Gysin sequence, which also exists when the action is semi-

free (i.e., fixed points are allowed) [2]. In this work, we obtain a Gysin sequence for the case of a

general smooth action. An exotic term appears, and we show that it is an obstruction for the duality

of the second term of the de Rham spectral sequence associated to the action.

Let us consider a smooth action Φ : G × M → M of a compact Lie group on a manifold M. The

action Φ induces naturally a filtration {F
i

Ω
∗

(M)
∣
∣
∣ i ∈ N} of the complex of de Rham differential forms

Ω
∗

(M), defined by:

F
i

Ω
i+ j

(M) =
{

ω ∈ Ω
j

(M)
∣
∣
∣ iX0
· · · iX j

ω = 0 for each family
{

X0, . . . , X j

}

⊂ X
Φ
(M)

}

.

Here, we have denoted by X
Φ
(M) the orbit distribution of T M formed by the vector fields of M tangent

to the orbits of Φ. This filtration defines the first quadrant de Rham spectral sequence, which converges

to H
∗

(M). The underlying motivation of this paper is the study of the Poincaré duality of the second term

E
s,t

2
of this spectral sequence.

When Φ is free, we have the duality E
s,t

2
� E

n−s,ℓ−t

2
, where n = dim M/G and ℓ = dim G. This property

is lost when the action is no longer free.

Inspired by the work of Goresky and MacPherson, one expects to recover the Poincaré duality by

using intersection cohomology. This is the case when the group G is the circle S
1

(see [6]). The next

natural group G to study is S
3

(of rank 1 and not abelian). It has been proved in [7] that Poincaré duality

still holds when the action Φ is semi-free.

What about the other S
3

-actions? Surprisingly, the second term of the above spectral sequence has

not been computed yet in this context. The main result of this paper is in the following Gysin sequence,

which computes this second term:
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· · · // H
i

(M)
2©

// H
i−3

(

M/S
3

,Σ/S
3
)

︸               ︷︷               ︸

E
i−3,3

2

⊕

(

H
i−2

(

MS
1
))−Z

2

︸            ︷︷            ︸

E
i−2,2

2

3©
// H

i+1
(

M/S
3
)

︸       ︷︷       ︸

E
i+1,0

2

1©
//

1©
//

1©
//

1©
// H

i+1

(M) // · · ·

with E
i,1

2
= 0, where

- Σ is the subset of points of M whose isotropy group is infinite;

- our choice of maximal torus, S1, is
{

a + bi
∣
∣
∣ a2 + b2 = 1

}

≤ S3;

- the Z
2
-action is induced by j ∈ S

3

,

- (−)−Z2 denotes the subspace of antisymmetric elements (cf. (6)),

- 1© is induced by the natural projection π : M → M/S
3

,

- 2© is induced by the integration along the fibers of π, and

- 3© involves the multiplication by the Euler class [e] ∈ IH
4

4

(

M/S
3
)

(cf. [7])

(cf. Theorem 2.4 and paragraph 2.5).

Notice that the first floor E
i,1

2
always vanishes (even for any perversity!) whereas the second floor E

i,2

2

may not, as we show in example 2.4. So, it follows that Poincaré duality does not work in the generic

case, even considering intersection cohomology.

As a consequence, a new approach is needed in order to extend the Poincaré duality for general

actions, and, thus, for Singular Riemannian Foliations, as is the partition induced by the orbits of a

general S3-action. Results in this direction are being explored.

In fact, in [5] the duality of the spectral sequence associated to a Singular Riemannian Foliation is

claimed for the special case of extreme perversities (which is tantamount to working only in the regular

stratum or relatively to the singular strata). As the previous counterexample shows, a new approach is

needed in order to extend the duality result for general perversities if one wants to consider the usual

cohomology (p = 0) case.

A different Gysin sequence relating the cohomology of M and the S3-equivariant cohomology of M

was constructed in [3], also in the case of a general smooth S3-action.

In the sequel M is a connected, second countable, Hausdorff, without boundary and smooth (of class

C∞) manifold. We fix a smooth action Φ : S
3

× M → M.

We wish to thank the referees for the indications given in order to improve this paper.

1. Stratifications and differential forms.

We describe the stratification arising from the action. We also introduce the controlled differential

forms, defined by Verona, in order to compute the singular cohomology in this context.

1.2. Thom-Mather structure.

There are three possibilities for the dimension of the isotropy subgroup1
S

3

x of a point x ∈ M, namely:

0,1 and 3. So, we have the dimension-type filtration

F =
{

x ∈ M
∣
∣
∣ dimS

3

x = 3
}

⊂ Σ =
{

x ∈ M
∣
∣
∣ dimS

3

x ≥ 1
}

⊂ M =
{

x ∈ M
∣
∣
∣ dimS

3

x ≥ 0
}

.

1We refer the reader to [2] for the notions related with compact Lie group actions, such as isotropy, invariant tubular

neighborhoods,. . .
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In this section, we describe the geometry of the triple (M,Σ, F). The subset Σ is not necessarily a

manifold, but the subsets F = MS
3

, Σ\F =
{

x ∈ M
∣
∣
∣ dimS

3

x = 1
}

and M\Σ =
{

x ∈ M
∣
∣
∣ dimS

3

x = 0
}

are

proper invariant submanifolds2 of M. So, we can consider τ0 : T0 → F and τ1 : T1 → Σ\F two invariant

tubular neighborhoods in M. Over each connected component, the structure group is the orthogonal

group. Associated to these tubular neighborhoods we have the following maps (k = 0, 1):

 The radius map νk : Tk → [0,∞[, defined fiberwise by u 7→ ‖u‖. It is an invariant smooth map.

 The dilatation map ∂k : [0,∞[×Tk → Tk, defined fiberwise by (t, u) 7→ t · u. It is a smooth

equivariant map.

The family of tubular neighborhoods TM = {T0, T1} is a Thom-Mather system when:

(TM)

{

τ0 = τ0
◦τ1

ν0 = ν0
◦τ1

}

on T0 ∩ T1 = τ
−1
1

(T0 ∩ (Σ\F)).

Lemma 1.3 Thom-Mather systems exist.

Proof. We fix an invariant tubular neighborhood τ0 : T0 → F. It exists since F is an invariant closed

submanifold of M. Since the isotropy subgroup of any point of F is the whole S
3

, we can find3 an atlas

A =
{

ϕ : U × R
n

→ τ−1
0

(U)
}

of τ0, having O(n) as structure group, and an orthogonal actionΨ : S
3

×Rn →

R
n such that

(1) ϕ(x,Ψ(g, v)) = Φ(g, ϕ(x, v)) ∀x ∈ U,∀v ∈ Rn and ∀g ∈ S
3

.

We write τ′
0
: S 0 → F the restriction of τ0, where S 0 is the submanifold ν−1

0
(1). It is a fiber bundle. The re-

striction τ′′
0

: (S 0∩(Σ\F)) → F is also a fiber bundle whose induced atlas isA′′ =
{

ϕ : U × S
n−1

Σ
→ τ′′

0
−1(U)

}

,

where S
n−1

Σ
=

{

w ∈ S
n−1

∣
∣
∣ dimS

3

w = 1
}

.

The map L0 : T0\F → S 0×]0,∞[, defined by L0(x) =
(

∂0

(

ν0(x)−1, x
)

, ν0(x)
)

, is an equivariant dif-

feomorphism. Under L0:

 the map τ0 becomes (y, t) 7→ τ′
0
(y),

 the map ν0 becomes (y, t) 7→ t, and

 the manifold T0 ∩ (Σ\F) becomes (S 0 ∩ (Σ\F))×]0,∞[.

Since the structure group of τ′0 is a compact Lie group, condition (1) allows us to construct an

invariant Riemannian metric µ0 on S 0 such that the fibers of τ′
0

are totally geodesic submanifolds and

(T (S 0 ∩ (Σ\F)))⊥ ⊂ ker
(

τ′0

)

∗
. Then, if we consider the associated tubular neighborhood τ′1 : T ′1 →

S 0 ∩ (Σ\F) we have τ′
0
◦ τ′

1
= τ′

0
.

We can construct now an invariant Riemannian metric µ on M\F such that under L0:

 the metric µ becomes µ0 + dr2 on S 0×]0,∞[.

We consider the associated tubular neighborhood τ1 : T1 → Σ\F. Verification of the property (TM) must

be done on T0 ∩ T1, where using L0, we get:

 T0 ∩ T1 becomes T ′
1
×]0,∞[.

 τ1 becomes (y, t) 7→ (τ′
1
(y), t).

A straightforward calculation gives (TM) and ends the proof. ♣

We fix a such system TM. For each k ∈ {0, 1}, we shall write Dk ⊂ M the open subset ν−1
k

([0, 1[) and

call it the soul of the tubular neighborhood τk. We shall write ∆0 = D0 ∩ Σ.

1.5. Verona’s differential forms. As it is shown in [8], the singular cohomology of M can be computed

by using differential forms on M\Σ. This is the tool we use in this work. The complex of controlled

2In fact, these manifolds may have connected components with different dimensions.
3For each connected component of F.
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forms (or Verona’s forms) of M is defined by

Ω
∗

V
(M) =






ω ∈ Ω
∗

(M\Σ)
∣
∣
∣ ∃ω1 ∈ Ω

∗

(Σ\F) and ω0 ∈ Ω
∗

(F) with






(a) τ∗1ω1 = ω on D1\Σ

(b) τ∗0ω0 = ω on D0\Σ

(c) τ∗
0
ω0 = ω1 on ∆0\F











.

Following [8] we know that the cohomology of the complex Ω
∗

V
(M) is the singular cohomology H

∗

(M).

We also use in this work the complex Ω
∗

V
(Σ) =

{

γ ∈ Ω
∗

(Σ\F)
∣
∣
∣ ∃γ0 ∈ Ω

∗

(F) with τ∗0γ0 = γ on ∆0\F
}

and the relative complexes Ω
∗

V
(M,Σ) = {ω ∈ Ω

∗

V
(M)

∣
∣
∣ ω1 ≡ 0} and Ω

∗

V
(Σ, F) = {γ ∈ Ω

∗

V
(Σ)

∣
∣
∣ γ0 ≡ 0}.

Since M is a manifold, controlled forms are in fact differential forms on M.

Lemma 1.6 Any controlled form of M is the restriction of a differential form of M.

Proof. First, we construct a section σ of the restriction ρ : Ω
∗

V
(M)→ Ω

∗

V
(Σ) defined by ρ(ω) = ω1. Let us

consider a smooth function f : ]0,∞[→ [0, 1] verifying f ≡ 0 on [3,∞[ and f ≡ 1 on ]0, 2]. Notice that

the compositions f ◦ν0 : M → [0, 1] and f ◦ν1 : M\F → [0, 1] are smooth invariant maps. So, for each

γ ∈ Ω
∗

V
(Σ) we have

(2) σ(γ) = ( f ◦ν0) · τ∗0γ0 + (1 − ( f ◦ν0)) · ( f ◦ν1)τ∗1γ ∈ Ω
∗

(M).

This differential form is a controlled form since

(a) Since ( f ◦ν1) ≡ 1 on D1, ( f ◦ν0) ≡ 0 on M\T0 and (TM) then we have

σ(γ) = ( f ◦ν0) · τ∗1τ
∗
0γ0 + (1 − ( f ◦ν0)) · τ∗1γ = τ

∗
1

(

( f ◦ν0) · τ∗0γ0 + (1 − ( f ◦ν0)) · γ
)

on D1\Σ. This gives (σ(γ))1 = ( f ◦ν0) · τ∗
0
γ0 + (1 − ( f ◦ν0)) · γ. Since τ∗

0
γ0 = γ on ∆0\F then

(σ(γ))1 = ( f ◦ν0) · γ + (1 − ( f ◦ν0)) · γ = γ.

(b) Since ( f ◦ν0) ≡ 1 on D0 then we have σ(γ) = τ∗0γ0 on D0\Σ. This gives (σ(γ))0 = γ0.

(c) We have (σ(γ))1 = γ = τ
∗
0γ0 = τ

∗
0(σ(γ))0 on ∆0\F.

This map σ is a section of ρ since ρ(σ(γ)) = (σ(γ))1 = γ.

In particular, ρ(ω − σ(ρ(ω))) = 0 for each ω ∈ Ω
∗

V
(M). As σ(ρ(ω)) ∈ Ω

∗

(M) (cf. (2)) and coincides

with ω in the open set (D0 ∪ D1)\Σ we conclude that ω can be extended to M. ♣

1.8. Invariant forms.

We fix {u1, u2, u3} a basis of the Lie algebra of S
3

with [u1, u2] = u3, [u2, u3] = u1 and [u3, u1] = u2.

We denote by Xi ∈ XΦ(M) the fundamental vector field associated to ui, i = 1, 2, 3.

A controlled form ω of M is an invariant form when L
Xi
ω = 0 for each i = 1, 2, 3. The complex

of invariant forms is denoted by Ω
∗

V
(M). The inclusion Ω

∗

V
(M) ֒→ Ω

∗

V
(M) induces an isomorphism in

cohomology. This a standard argument based on the fact that S
3

is a connected compact Lie group (cf.

[4, Theorem I, Ch. IV, vol. II]). So,

(3) H
∗
(

Ω
.

V
(M)

)

= H
∗
(

Ω
.

V
(M)

)

= H
∗

(M).

1.10. Basic forms. A controlled form ω of M is a basic form when i
X
ω = i

X
dω = 0 for each X ∈ X

Φ
(M).

The complex of the basic forms is denoted byΩ
∗

V

(

M/S
3
)

. In a similar fashion we defineΩ
∗

V

(

Σ/S
3
)

. In this

work, we shall use the following relative versions of these complexes: Ω
∗

V

(

M/S
3

,Σ/S
3
)

= Ω
∗

V

(

M/S
3
)

∩

Ω
∗

V
(M,Σ), as well as Ω

∗

V

(

Σ/S
3

, F
)

= Ω
∗

V

(

Σ/S
3
)

∩Ω
∗

V
(Σ, F).
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Lemma 1.11

H
∗
(

Ω
·

V

(

M/S
3
))

= H
∗
(

M/S
3
)

and H
∗
(

Ω
·

V

(

M/S
3

,Σ/S
3
))

= H
∗
(

M/S
3

,Σ/S
3
)

.

Proof. The orbit space M/S
3

is a stratified pseudomanifold. The family of tubular neighborhoodsT
M/S

3 =

{π(T0), π(T1)} is a Thom-Mather system. Here, π : M → M/S
3

denotes the canonical projection. Using

this projection, we identify the complex of controlled forms of M/S
3

withΩ
·

V

(

M/S
3
)

, and the same holds

for Σ.

Since H
∗
(

Ω
·

V
(X)

)

= H
∗

(X) for any stratified pseudomanifold X, then H
∗
(

Ω
·

V

(

M/S
3
))

= H
∗
(

M/S
3
)

and H
∗
(

Ω
·

V

(

Σ/S
3
))

= H
∗
(

Σ/S
3
)

(cf. [8]). In fact, the orbit spaces M/S
3

and Σ/S
3

are triangulable [9],

and by [10], both of them possess good coverings. Moreover, any open covering of M/S
3

(resp. Σ/S
3

)

possesses a subordinated partition of unity made up of controlled functions. So, we can proceed as in [1]

and construct a commutative diagram

· · · // H
p
(

Ω
·

V

(

M/S
3

,Σ/S
3
))

// H
p
(

Ω
·

V

(

M/S
3
))

//

f
M

��

H
p
(

Ω
·

V

(

Σ/S
3
))

//

f
Σ

��

H
p+1

(

Ω
·

V

(

M/S
3

,Σ/S
3
))

// · · ·

· · · // H
p
(

M/S
3

,Σ/S
3
)

// H
p
(

M/S
3
)

// H
p
(

Σ/S
3
)

//// H
p+1

(

M/S
3

,Σ/S
3
)

// · · ·

where the vertical arrows are isomorphisms and the horizontal rows are the long exact sequences associ-

ated to the pair (M/S
3

,Σ/S
3

). This gives H
∗
(

Ω
·

V

(

M/S
3

,Σ/S
3
))

= H
∗
(

M/S
3

,Σ/S
3
)

4. ♣

2. Gysin sequence.

We construct the long exact sequence associated to the action Φ : S
3

× M → M relating the coho-

mology of M and M/S
3

. First of all, we shall use strongly that Φ is almost free5 in M\Σ to get a better

description of the controlled forms of M.

2.2. Decomposition of a differential form.

We endow M\Σ with an S
3

-invariant Riemannian metric µ0, which exists because S3 is compact. We

also fix a bi-invariant Riemannian metric ν on the Lie group S
3

. Consider now the µ0-orthogonal S
3

-

invariant decomposition T (M\Σ) = D⊕ ξ, where D is the distribution generated by Φ. Since the action

Φ is almost free on M\Σ, for each point x ∈ M\Σ, the family {X1(x), X2(x), X3(x)} is a basis of Dx. We

define the S
3

-Riemannian metric µ on M\Σ by putting

µ(w1,w2) =






µ0(w1,w2) if w1,w2 ∈ ξx

0 if w1 ∈ ξx,w2 ∈ Dx

δi, j if w1 = Xi(x),w2 = X j(x)

We denote by χi = iXi
µ ∈ Ω

1

(M\Σ) the characteristic form associated to ui, i = 1, 2, 3. Since
χ

j(Xi) = µ(Xi, X j) = δi j, each differential form ω ∈ Ω
∗

(M\Σ) possesses a unique writing,

ω =
0
ω +

3∑

p=1

χ
p ∧ pω +

∑

1≤p<q≤3

χ
p ∧ χq ∧ pq

ω + χ1 ∧ χ2 ∧ χ3 ∧ 123
ω,

4Notice that this is not the five lemma.
5All the isotropy subgroups are finite groups.
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where the coefficients
•
ω are horizontal forms, that is, they verify iX

(

•
ω
)

= 0 for each X ∈ X
Φ
(M). This

is the canonical decomposition of ω. For example, dβ =
0
(dβ)+χ1∧L

X1
β+χ2∧L

X2
β+χ3∧L

X3
β, for any

horizontal form β (notice that this formula is no longer true if β is not horizontal). Since L
Xi

χ
j = χ[ui,u j],

with 1 ≤ i, j ≤ 3, then

(4)
L

X1

χ
1 = L

X2

χ
2 = L

X3

χ
3 = 0 L

X1

χ
2 = −L

X2

χ
1 = χ3

L
X1

χ
3 = −L

X3

χ
1 = −χ2 L

X2

χ
3 = −L

X3

χ
2 = χ1

and we have the canonical decompositions

(5)






dχ1 = e1 − χ2 ∧ χ3

dχ2 = e2 + χ1 ∧ χ3

dχ3 = e3 − χ1 ∧ χ2.

Here, the forms ei are basic for i = 1, 2, 3. Notice that e1 − χ2 ∧ χ3 is the Euler form of the action of the

maximal torus with fundamental vector field X1, and that e2
1 + e2

2 + e2
3 is the Euler form of the action Φ

(see section (2.8)).

Consider U ⊂ M\Σ an equivariant open subset. If ω ∈ Ω
∗

(M\Σ,U) then the coefficients of its

canonical decomposition are horizontal forms of Ω
∗

(M\Σ,U). The following Lemma is the key for

the construction of the Gysin sequence. Given an action of Z
2

on a vector space E generated by the

morphism h : E → E, we shall write

(6) E−Z2 = {e ∈ E
∣
∣
∣ h(e) = −e},

the subspace of antisymmetric elements. Notice that j ∈ S
3

acts naturally on MS
1

.

Lemma 2.3

H
∗





Ω
·

V
(M)

Ω
·

V

(

M/S
3
)




= H

∗−3
(

M/S
3

,Σ/S
3
)

⊕

(

H
∗−2

(

MS
1
))−Z

2

Proof. We consider the integration operator:

>

:
Ω
∗

V
(M)

Ω
∗

V

(

M/S
3
) −→ Ω

∗−3

V

(

M/S
3

,Σ/S
3
)

,

given by:
>

(< ω >) = (−1)degω i
X3

i
X2

i
X1
ω.

It is a well defined differential operator since

- the tubular neighborhoods of the Thom-Mather’s structure T are invariant,

- the operator i
X3

i
X2

i
X1

vanishes on Σ, and

- i
X
i

X3
i

X2
i

X1
ω = i

X
di

X3
i

X2
i

X1
ω = 0 for each X ∈ X

Φ
(M)6.

6 LAiB = iBLA + i[A,B], ∀A, B ∈ X(M).
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Every form γ ∈ Ω
∗−3

V

(

M/S
3

,Σ/S
3
)

vanishes in a neighborhood of Σ. So, the product χ1 ∧ χ2 ∧ χ3 ∧ γ

belongs to Ω
∗

V
(M) (cf. (4)). Since i

X3
i

X2
i

X1
(χ1 ∧ χ2 ∧ χ3 ∧ γ) = γ then we have the short exact sequence

(7) 0 // Ker ∗
>

�

�

//
Ω
∗

V
(M)

Ω
∗

V

(

M/S
3
)

>

// Ω
∗−3

V

(

M/S
3

,Σ/S
3
)

// 0

By Lemma 1.11, it suffices to prove the following:

(a) H
∗
(

Ker ∗
> )

=

(

H
∗−2

(

MS
1
))−Z

2

.

(b) The associated connecting homomorphism δ vanishes.

(a)

For the sake of simplicity we putA
∗

(M) = Ker ∗
>

. In fact we haveA
∗

(M) =

{

ω ∈ Ω
∗

V
(M)

∣
∣
∣ i

X3
i

X2
i

X1
ω = 0

}

Ω
∗

V

(

M/S
3
) .

Analogously, we defineA
∗

(M,Σ),A
∗

(Σ) andA
∗

(Σ, F). To get (a), it suffices to prove the following facts:

(a1) H
∗
(

A
∗

(M)
)

= H
∗
(

A
∗

(Σ)
)

.

(a2) H
∗(

A
·

(Σ)
)

= H
∗(

A
·

(Σ, F)
)

.

(a3) H
∗(

A
·

(Σ, F)
)

=

(

H
∗−2

(

MS
1
))−Z

2

.

(a1)

Consider the inclusion L : A
∗

(M,Σ) −→ A
∗

(M) and the restriction R : A
∗

(M) → A
∗

(Σ), which are

differential morphisms. This gives the short sequence

0 //A
∗

(M,Σ)
L

//A
∗

(M)
R

//A
∗

(Σ) // 0.

Notice that R◦L = 0. This short sequence is exact since:

•The operator R is an onto map. Consider γ ∈ Ω
∗

V
(Σ). We know that σ(γ) ∈ Ω

∗

V
(M) (cf. Lemma 1.6).

The result comes from:

 σ(γ) ∈ Ω
∗

V
(M). Since τ0, τ1 are equivariant and f ◦ν0, f ◦ν1 are invariant.

 i
X3

i
X2

i
X1
σ(γ) = 0. Since τ0, τ1 are equivariant and rank {X1(x), X2(x), X3(X)} ≤ 2 for any x ∈ Σ.

 R (< σ(γ) >) =< (σ(γ))1 >=< γ >.

•Ker R ⊂ Im L. Consider ω ∈ Ω
∗

V
(M) with i

X3
i

X2
i

X1
ω = 0 and i

X j
ω1 = 0 for j ∈ {1, 2, 3}. Since τ0 and

τ1 are equivariant and X j = 0 on F then i
X j
σ(ω1) = 0 for j ∈ {1, 2, 3}. This gives < σ(ω1) >= 0. Finally,

we have < ω >=< ω−σ(ω1) >= L (< ω − σ(ω1) >) since (ω − σ(ω1))1 = ω1 − (σ(ω1))1 = ω1 −ω1 = 0.

Now, we will get (a1) by proving that H
∗(

A
·

(M,Σ)
)

= 0. By definition of Verona’s forms we have

A
∗

(M,Σ) = A
∗

(M,D)
excision
=== A

∗

(M\Σ,D\Σ), where D = D0 ∪ D1. A straightforward calculation gives:

H
∗
(

A
·

(M\Σ,D\Σ)
)

=

{

ω ∈ Ω
∗

(M\Σ,D\Σ)
∣
∣
∣ i

X3
i

X2
i

X1
ω = 0 and i

X j
dω = 0 for j ∈ {1, 2, 3}

}

Ω
∗
(

(M\Σ)/S
3
, (D\Σ)/S

3
)

+
{

dβ
∣
∣
∣ β ∈ Ω

∗−1

(M\Σ,D\Σ) and i
X3

i
X2

i
X1
β = 0

}
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Let ω be a differential form of Ω
∗

(M\Σ,D\Σ) verifying i
X3

i
X2

i
X1
ω = 0 and i

X j
dω = 0 for j ∈ {1, 2, 3}.

Then
d
(
χ

1 ∧ iX3
iX2
ω − χ2 ∧ iX3

iX1
ω + χ3 ∧ iX2

iX1
ω
)

︸                                                   ︷︷                                                   ︸

β

ω = +

−e1 ∧ iX3
iX2
ω + e2 ∧ iX3

iX1
ω − e3 ∧ iX2

iX1
ω +

0
ω

︸                                                         ︷︷                                                         ︸

α

(cf. (5)) with β ∈ Ω
∗−1

(M\Σ,D), verifying i
X3

i
X2

i
X1
β = 0, and α ∈ Ω

∗
(

(M\Σ)/S
3

,D/S
3
)

. This implies

H
∗(

A
·

(M\Σ,D\Σ)
)

= 0 and then H
∗(

A
·

(M,Σ)
)

= 0.

(a2)

Consider the inclusion L : A
∗

(Σ, F) ֒→ A
∗

(Σ) which is a differential morphism. It suffices to prove

that L is an onto map.

Let us consider a smooth function f : ]0,∞[→ [0, 1] verifying f ≡ 0 on [3,∞[ and f ≡ 1 on ]0, 2].

Notice that the composition f ◦ν0 : M → [0, 1] is a smooth invariant map. So, for each γ ∈ Ω
∗

(F) we

have σ(γ) = ( f ◦ν0)τ∗0γ ∈ Ω
∗

(M). This differential form verifies

 σ(γ) ∈ Ω
∗

V
(Σ). Since ( f ◦ν0) ≡ 1 on ∆0 then σ(γ) = τ∗0γ on ∆0\F. This gives (σ0(γ))0 = γ.

 σ(γ) ∈ Ω
∗

V
(Σ). Since τ0 is an equivariant map and f ◦ν0 is an invariant map.

 i
X j
σ(γ) = 0 for j ∈ {1, 2, 3} since τ0 is an equivariant map and X j = 0 on F.

Then < σ(γ) >= 0 onA
∗

(Σ).

Let < ω > be a class ofA
∗

(Σ). We can write: < ω >=< ω − σ((ω)0) >= L (< ω − σ((ω)0) >) since

(ω − σ((ω)0))0 = ω0 − (σ(ω0))0 = ω0 − ω0 = 0. This proves that L is an onto map.

(a3)

By definition of Verona’s differential forms we have

A
∗

(Σ, F) = A
∗

(Σ,∆0)
excision
=== A

∗

(Σ\F,∆0\F) =
Ω
∗

(Σ\F,∆0\F)

Ω
∗
(

(Σ\F)/S
3
, (∆0\F)/S

3
) .

The isotropy subgroup of a point of Σ\F is conjugated to S
1

or N(S
1

) (cf. [2, Th. 8.5, pag. 153]).

We consider the manifold Γ = (Σ\F)S
1

. A straightforward calculation gives that Σ\F is G-equivariant

diffeomorphic to

S
3

×
N(S

1
)
Γ =

(

S
3

/S
1
)

×
N(S

1
)/S

1 Γ = S
2

×Z
2
Γ.

Notice that Γ/Z
2
= (Σ\F)/S

3

. Let Γ0 be the open subset Γ ∩ ∆0 of Γ. Analogously we have ∆0\F =

S
2

×Z
2
Γ0 and Γ0/Z2

= (∆0\F) /S
3

.

The Z
2
-action on S

2

is generated by (x0, x1, x2) 7→ (−x0,−x1,−x2)7. Then, the Z
2
-action on H

0
(

S
2
)

(resp. H
2
(

S
2
)

) is the identity Id (resp. − Id ). The Z
2
-action on Γ is induced by Φ( j,−). The Künneth

7This map is induced by j : S
3

→ S
3

defined by j(u) = u · j (see [1, Example 17.23]).
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formula gives

H
∗
(

Ω
∗

(Σ\F,∆0\F)
)

= H
∗
(

Ω
·
(

S
2

×Z
2
Γ, S

2

×Z
2
Γ0

))

= H
∗
(

Ω
·
(

S
2

× Γ, S
2

× Γ0

)Z
2

)

= H
∗
(

Ω
·
(

S
2

× Γ, S
2

× Γ0

))Z
2
=

(

H
∗
(

S
2
)

⊗ H
∗

(Γ, Γ0)
)Z

2

=
(

H
0
(

S
2
)

⊗ H
∗

(Γ, Γ0)
)Z

2
⊕

(

H
2
(

S
2
)

⊗ H
∗−2

(Γ, Γ0)
)Z

2
=

(

H
∗

(Γ, Γ0)
)Z

2
⊕

(

H
∗−2

(Γ, Γ0)
)−Z

2

= H
∗(

Γ/Z
2
, Γ0/Z2

)

⊕
(

H
∗−2

(Γ, Γ0)
)−Z

2
= H

∗
(

(Σ\F)/S
3

, (∆0\F)/S
3
)

⊕
(

H
∗−2

(Γ, Γ0)
)−Z

2
,

and then

H
∗
(

A
·

(Σ\F,∆0\F)
)

= H
∗





Ω
·

(Σ\F,∆0\F)

Ω
·
(

(Σ\F)/S
3
, (∆0\F)/S

3
)




=

(

H
∗−2

(Γ, Γ0)
)−Z

2
=

(

H
∗−2

(

(Σ\F)S
1

, (∆0\F)S
1
))−Z

2

excision
===

(

H
∗−2

(

ΣS
1

,∆S
1

0

))−Z
2 retraction
===

(

H
∗−2

(

ΣS
1

, FS
1
))−Z

2

.

Consider the long exact sequence associated to the Z
2
-invariant pair

(

ΣS
1

, FS
1
)

:

· · · →

(

H
i−1

(

FS
1
))−Z

2

→

(

H
i
(

ΣS
1

, FS
1
))−Z

2

→

(

H
i
(

ΣS
1
))−Z

2

→

(

H
i
(

FS
1
))−Z

2

→ · · · .

Since the action of Z
2

on FS
1

= F is trivial, then

(

H
i

(

FS
1
))−Z

2

= 0. On the other hand, we have

ΣS
1

= MS
1

. This gives

(

H
∗−2

(

ΣS
1

, FS
1
))−Z

2

=

(

H
∗−2

(

MS
1
))−Z

2

.

(b)

Notice that the connecting morphism δ is defined by δ([ζ]) = ±
[

< d(χ1 ∧ χ2 ∧ χ3) ∧ ζ >
]

. We have

δ ≡ 0 since ζ1 = 0 (cf (a1)). ♣

Theorem 2.4 Given any smooth action Φ : S
3

× M −→ M we have the Gysin sequence

· · · // H
i

(M) // H
i−3

(

M/S
3

,Σ/S
3
)

⊕

(

H
i−2

(

MS
1
))−Z

2
// H

i+1
(

M/S
3
)

// H
i+1

(M) // · · ·

where Σ is the subset of points of M whose isotropy group is infinite, the Z
2
-action is induced by j ∈ S

3

and (−)−Z2 denotes the subspace of antisymmetric elements.

Proof. Consider the short exact sequence

(8) 0 // Ω
∗

V

(

M/S
3
)

// Ω
∗

V
(M) //

Ω
∗

V
(M)

Ω
∗

V

(

M/S
3
) // 0,

take its associated long exact sequence and then, apply Lemma 1.11, (3) and Lemma 2.3. ♣

2.6. Example. Consider the connected sum M = CP2 # CP2
�

(

S
3 × [0, 1]

)

/ ∼, with

((z1, z2), i) ∼ ((z · z1, z · z2), i), i = 0, 1,
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for all z ∈ S1 and (z1, z2) ∈ S3 in complex coordinates. The product of S3 induces on M the action:

g · [h, t] = [g · h, t], ∀g, h ∈ S3,∀t ∈ [0, 1].

For this action, we have:

Σ =
(

S
3 × {0, 1}

)

/ ∼ � S2 × {0, 1}, F = ∅,

M/S3
� [0, 1], Σ/S3

� {0, 1}, MS
1

� {N, S } × {0, 1},

where N and S stand for the North and South poles of S2. The Z2- action on MS
1

is determined by j ∈ S3,

which induces the antipodal map on S2, and so, interchanges its poles. Thus, the exotic term that appears

in the central part of the Gysin Sequence is not trivial:

H
2

(M)
�

−→

(

H
0
(

MS
1
))−Z

2

=
(

H
0

({N, S } × {0, 1})
)−Z

2
� R ⊕ R.

2.8. Morphisms. We describe the morphisms of the Gysin sequence.

1© : H
∗
(

M/S
3
)

−→ H
∗

(M)

It is the pull-back π∗ of the canonical projection π : M → M/S
3

(cf. Lemma 1.11).

2© : H
∗

(M) −→ H
∗−3

(

M/S
3

,Σ/S
3
)

⊕

(

H
∗−2

(

MS
1
))−Z

2

We have already seen that the first component of this morphism is induced by
>

S
3 [ω] = [i

X3
i

X2
i

X1
ω].

For the second component we keep track of the isomorphisms given by Lemma 2.3 and we get that it is

defined by: [ω] 7→ class
(>

S
2 (ω1 − σ(ι∗ω1))

)

.

3© : H
∗−3

(

M/S
3

,Σ/S
3
)

⊕

(

H
∗−2

(

MS
1
))−Z

2

−→ H
∗+1

(

M/S
3
)

A straightforward calculation using sequences (7) and (8) gives that the connecting morphism 3© of the

Gysin sequence sends:

• [ζ] ∈ H
∗−3

(

M/S
3

,Σ/S
3
)

to -
[(

e2
1
+ e2

2
+ e2

3

)

∧ ζ
]

, and

• [ξ] ∈

(

H
∗−2

(

MS
1
))−Z

2

=

(

H
∗−2

(

ΣS
1

, FS
1
))−Z

2

to [dσ ∧ ǫ ∧ τ∗1ξ] where ǫ is an Euler form of the

restriction Φ1 : S
1

×

(

τ−1
1

(

ΣS
1
)

\ΣS
1
)

→

(

τ−1
1

(

ΣS
1
)

\ΣS
1
)

of Φ.

Since e2
1
+ e2

2
+ e2

3
is not a Verona’s form, then it does not define a class of H

4
(

M/S
3
)

. Nevertheless, it

does generate a class in the intersection cohomology group IH
4

4

(

M/S
3
)

(as in the semi-free case of [7]).

2.10. Remarks.

(a) We have

(

H
∗

(

MS
1
))−Z

2

= H
∗

(

MS
1
)/

H
∗

(

MS
1

/Z
2

)

. Let us see that. The correspondence ω 7→
(

ω + j∗ω

2
,
ω − j∗ω

2

)

establishes the isomorphismΩ
∗

(

MS
1
)

=

(

Ω
∗

(

MS
1
))Z

2

⊕

(

Ω
∗

(

MS
1
))−Z

2

= Ω
∗

(

MS
1

/Z
2

)

⊕

(

Ω
∗

(

MS
1
))−Z

2

and hence, H
∗

(

MS
1
)

= H
∗

(

MS
1

/Z
2

)

⊕

(

H
∗

(

MS
1
))−Z

2

. This gives the claim.
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(b) Let us suppose that the action is semi-free, almost free or free. Then, j acts trivially on MS
1

= F,

and hence, we have a long exact sequence

· · · → H
i

(M)→ H
i−3

(

M/S
3

, F
)

→ H
i+1

(

M/S
3
)

→ H
i+1

(M)→ · · · .

(c) Let us suppose that there is not a point of M whose isotropy subgroup is conjugated to S
1

. Then,

we have a long exact sequence

· · · → H
i

(M)→ H
i−3

(

M/S
3

,Σ/S
3
)

→ H
i+1

(

M/S
3
)

→ H
i+1

(M)→ · · · .

since j acts trivially on MS
1

=
{

x ∈ M
∣
∣
∣ S

3

x = S
3 or N(S

1

)
}

.

2.12. Actions over S
1

.

Using the Gysin sequence we have constructed, we now give a list of all the different cohomologies

of a S
3

-manifold M having the circle as orbit space8. By geometrical reasons, the orbit space is composed

by just one stratum, the whole circle. Following the nature of the orbits, we distinguish four cases.

(a) All orbits are of dimension 3. We have P
M
= 1+ t+ t3+ t4. This is the case of the manifold S

3

×S
1

,

where S
3

acts by multiplication on the left factor.

(b) All orbits are isomorphic to S
2

. We distinguish two cases following wether the covering MS
1

→

MS
1

/Z
2
= M/MS

1

is trivial or not. In the first case we have P
M
= 1 + t + t2 + t3. This is the case of the

manifold S
2

×S
1

, where S
3

acts by multiplication on the left factor. In the second case we have P
M
= 1+t,

as is the case of the manifold S
2

×
Z

2
S

1

where S
3

acts by multiplication on the left factor.

(c) All orbits are isomorphic to RP
2

. In this case, we have P
M
= 1+ t. This is the case of the manifold

RP
2

× S
1

where S
3

acts by multiplication on the left factor.

(d) All orbits are points. We have P
M
= 1 + t. This corresponds to the manifold S

1

where S
3

acts

ineffectively.
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[8] A. Verona: Le théorème de de Rham pour les préstratifications abstraites, C. R. Acad. Sci. Paris

Sér. A-B 273 (1971), 886–889

[9] A. Verona: Stratified mappings-structures and triangulability, Lecture Notes in Mathematics, 1102,

Springer-Verlag, Berlin, 1984.

[10] C. T. Yang : The triangulability of the orbit space of a differentiable transformation group,

Bull. Amer. Math. Soc. 69 (1963), 405–408.


