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The Gysin sequence
for S3-actions on manifolds

Jo Ignacio Royo Priefo Martintxo Saralegi-Arangurén

Universidad del Pais Vasto Université d’Artois
Euskal Herriko Unibertsitatea

Abstract

Given a smooth action & on a manifoldM, we are interested in the relationship between the
cohomologies oM and M/S3. If the action is free, we have indeed a princisgﬂbundle, and this
relationship is described by the classical Gysin sequemiih also exists when the action is semi-
free (i.e., fixed points are allowed}][ In this work, we obtain a Gysin sequence for the case of a
general smooth action. An exotic term appears, and we shatttis an obstruction for the duality
of the second term of the de Rham spectral sequence assacidles action.

Let us consider a smooth actidn: S x M — M. The cohomology of the manifol¥ can be
computed by means of the de Rham spectral sequence. The oiatnigpthe understanding of the
second terrrEzp’q of this spectral sequence. When the action is (almost) fisesecond term is just

Hp(M/S3) ® Hq(S3). When the actio® is semi-free, we have the Gysin sequence:

®

Hi(M) @ Hiia(M/SS,MSS) © i

HM(M/SS) ON (M) e,

where the morphisnp is induced by the natural projectian M — M/S°, the morphisne is induced
by the integration along the fibers a@fand the morphisn® is the multiplication by theEuler class
[€] € H;(M/SS) (cf. [6]).

The main goal of this work is to extend this result to any sthaation ofS’. We obtain the following
Gysin sequence (cf. Theorel3and paragraph 2.5)

e H (M) -2 H (M 38 (Hi'z(MSl))_Zz R O () By pe—

where
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- X is the subset of points dfl whose isotropy group is infinite;
- theZ,-action is induced by € S’ and
- (-)7%2 denotes the subspace of antisymmetric elementsgpf. (

A word about the duality of the second terFlerjt of the de Rham spectral sequence associated to
the action. Whenb is free, we have the dualitf, = E, =", wheren = dimM/s’. This property
is lost when singularities appear, but duality is recovarethe semi-free case by using intersection
cohomology. In fact, we havgE, = 4E. ~' wherep andq are dual perversities] (see [] for the

2
circle case).
-Z
For a generaf, the exotic tern(H*(MSl)) * we have found may be interpreted as an obstruction

for extending this duality as follows. The calculations maal this work show thagE:0 = HS(M/SS),

-z
E = (HS(MSl ) g E = HS(M/SS,E/SS) and E." = 0 for any perversityp, which makes duality
impossible when the exotic term is not 0, as happens in 2.&% &tample also shows that this duality,

which holds for regular Riemannian foliation$],| does not work for singular Riemannian foliations,
even considering perversities.

In the sequeM is a connected, second countable, Haugsdeithout boundary and smooth (of class
C>) manifold. We fix a smooth actio: S’ x M — M.

1. Stratifications and differential forms.
We describe the stratification arising from the action. W ahtroduce the controlled fiierential
forms, defined by Verona, in order to compute the singulaoowdiogy in this context.

1.1. Thom-Mather structure.

There are three possibilities for the dimension of the t:‘:mlrsubgroustX of a pointx € M, namely:
0,1 and 3. So, we have the dimension-type filtration

F={xeM|dims;=3lcz={xeM|dims,>1cM={xeM|dims;>0}.
In this section, we describe the geometry of the trigl X, F). The subsek is not necessarily a
3

manifold, but subsets = M®, S\F = {xe M| dims; = 1} andM\Z = {xe M| dims; =0} are
proper invariant submanifoldsf M. So, we can consideg: To — F andr,: T, — Z\F two invariant

tubular neighborhoods iM. Over each connected component, the structure group isrthegonal
group. Associated to these tubular neighborhoods we hav@llowing mapsk = 0, 1):

~» Theradius mapvy: Tx — [0, oof, defined fiberwiselly byu — ||uf|. It is an invariant smooth map.

~» The dilatation mapdy: [0, co[xTx — Ty, defined fiberwiselly byt(u) — t - u. It is a smooth
equivariant map.
The family of tubular neighborhoodgy, = {To, T1} is aThom-Mather systemvhen:
To = To°T1 |
(TM) { Vo = Vot } onToN Ty =717 (To N (Z\F)).

Lemma 1.2 Thom-Mather systems exist.

Proof. We fix an invariant tubular neighborhoad: Ty — F. It exists sinceF is an invariant closed
submanifold ofM. Since the isotropy subgroup of any pointffs the wholeS’, we can find an atlas

2We refer the reader ta3] for the notions related with compact Lie group actions,hsas isotropy, invariant tubular
neighborhoods,. ..

3In fact, these manifolds may have connected componentsdifférent dimensions.

4For each connected componentof
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A={¢: UxR" - r5(U)} of 7o, havingO(n) as structure group, and an orthogonal ackrs’xR" —
R" such that

Q) P(x, (g, V) = D(g, 2(x,V)) ¥xeU,¥veR"andvgeS’.

We writety: Sp — F the restriction otp, whereSy is the submanifoldgl(l). Itis afiber bundle. There-
strictionry : (SoN(Z\F)) — F is also a fiber bundle whose induced atlagiis= {¢: U x ;" — 75 7(U)},
wheres; " = {wes™"| dims;, = 1}.

The map¥y: To\F — Spx]0, o[, defined byLy(X) = (80 (vo(x)‘l, x),vo(x)), is an equivariant dif-
feomorphism. Undet:

~> the maprg becomesy(; t) = 7y (y),

~» the mapyvy becomesy(; t) — t, and

~» the manifoldTy N (2\F) becomes$y N (£\F))x]O0, ool.

Since the structure group af, is a compact Lie group, conditiori) allows us to construct an
invariant Riemannian metrig, on S, such that the fibers afy are totally geodesic submanifolds and
(T(SoN (Z\F)))*" < ker(rp) . Then, if we consider the associated tubular neighborhgodr; —
So N (Z\F) we haverj o 7] = 7.

We can construct now an invariant Riemannian metrie M\ F such that undegy:

~> the metricu becomegig + dr? on Syx]0, oof.

We consider the associated tubular neighborh@od’; — X\F. Verification of the property (TM) must
be done oy N T4, where using?q, we get:

~» To N T1 becomed'|x]0, oof.

~> 11 becomesy(, t) — (7(y), 1).

A straightforward calculation gives (TM) and ends the proof *

We fix a such systery,. For eactk € {0, 1}, we shall writeD, ¢ M the open subset *([0, 1[) and
call it thesoulof the tubular neighborhoor,. We shall writeA; = Do N X.

1.3. Verona’s diferential forms. As itis shown in [], the singular cohomology d#l can be computed
by using diferential forms orM\X. This is the tool we use in this work. The complexaantrolled
forms(or Verona’s formyof M is defined by

(@) Tjw1 = w onD;\X
Q (M) ={w e Q' (M\X) | Jw; € Q' (2\F) andwy € Q' (F) with { (b) Tjwo = w 0nDo\Z
(C) Thwo = w1 ONAQ\F
Following [7] we know that the cohomology of the compl€(M) is the singular cohomologht™ (M).
We also use in this work the compléx () = {y e Q' (Z\F) | Fyo € Q' (F) with 7570 = ¥ on AO\F}
and therelative complexe®_ (M, %) = {w € Q (M) | w; = 0tandQ (Z,F) ={y € Q (2) | Yo = O}.
SinceM is a manifold, controlled forms are in factfiifirential forms oriM.
Lemma 1.4 Any controlled form of M is the restriction of affirential form of M.

Proof. First, we construct a sectienof the restrictiorp: Q;(M) - Q;(Z) defined byp(w) = w;. Letus
consider a smooth functioh: ]0, co[— [0, 1] verifying f = 0 on [3 o[ and f = 1 on ]Q, 2]. Notice that
the compositiong-vy: M — [0, 1] and fev;: M\F — [0, 1] are smooth invariant maps. So, for each
y € Q (Z) we have

(2) a(y) = (fvo) - tyyo + (L = (fro)) - (Fov)riy € Q(M).
This differential form is a controlled form since
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(a) Since f-v1) =1 onDq, (fovg) =0 onM\T, and (TM) then we have

o(y) = (fovo) - T175y0 + (1 = (for0)) - 71y = 71 ((Fovo) - Tov0 + (1 = (f10)) - 7)

on D;\X. This gives §(y))1 = (fovo) - t5v0 + (1 = (fovg)) - v. Sinceryyo = y onAg\F then
()= (fvo) -y + (1= (fv)) - ¥ = 7.

(b) Since €-vo) = 1 onD, then we haver(y) = 15y onDo\X. This gives §(y))o = vo.

(c) We have¢(y)): = v = 15¥0 = 75((¥))o ONAo\F.

This mapo is a section op sincep(o(y)) = (o(y))1 = .
In particular,o(w — o(p(w))) = 0 for eachw € Q (M). As o(p(w)) € Q (M) (cf. (2)) and coincides
with w in the open setldy U D;)\X we conclude that) can be extended tdl. *

1.5. Invariant forms. Denote byX (M) the subbundle of M formed by the vector fields d#l tangent
to the orbits ofd. A controlled formw of M is aninvariant formwhenL,w = 0 for eachX € X,(M).
The complex of invariant forms is denoted QZ(M). The inclusionQ;(M) — Q;(M) induces an

isomorphism in cohomology. This a standard argument bas¢kefact tha’ is a connected compact
Lie group (cf. £, Theorem I, Ch. 1V, vol. II]). So,

©) H'(Q,(M)) = H'(Q,(M)) = H'(M).

1.6. Basic forms. A controlled formw of M is abasic formwheni, w = i, dw = 0 for eachX € X, (M).
The complex of the basic forms is denote(n{)(M/S3). In a similar fashion we definQ;(Z/S3). In this

work, we shall use the following relative versions of theemplexes:Q;(M/SS,Z/SS) = Q;(M/SS) N
Q,(M.3), as well a2 ($/5°, F) = Q,(2/5°) n Q)(=. F).

Lemma 1.7
H'(Q,(M/s7)) = H'(M/s7) and H(Q,(M/s7,2/87)) = H'(M/s”, 5/5°).

Proof. The orbit spac#//s’ is a stratified pseudomanifold. The family of tubular neightwodst, s =

{n(To), 7(T1)} is aThom-Mather systenHere,7: M — M/S’ denotes the canonical projection. Using
this projection, we identify the complex of controlled fasmf M/S” with Q (M/s°), and the same holds
for X.

Since H*(Q'V(X)) = H'(X) for any stratified pseudomanifold, then H*(Q'V(M/Sa)) = H*(M/Ss)
andH'(Q,(2/5°)) = H'(2/5°) (cf. [7]). In fact, the orbit spacedl/s’ andZ/s” are triangulabled],
and by P, both of them possess good coverings. Moreover, any opeericg of M/S’ (resp. £/S°)
possesses a subordinated partition of unity made up ofatedrfunctions. So, we can proceed asih [
and construct a commutative diagram

= H(Q,(M/S7,2/8°)) —= H’(Q, (M/5")) — H*(Q, (2/87)) — H™ (@, (M/8°, 2/5)) — -

| |t

Hp(M/SS) Hp(Z/SS)

Hp(M/SS,Z/SS)

HP+1(M/SS,E/SS) I
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where the vertical arrows are isomorphisms and the ho@onivs are the long exact sequences associ-
ated to the pairI/s’, £/s°). This givesH'(Q, (M/s”, £/5°)) = H'(M/s°, /). n

2. Gysin sequence.

We construct the long exact sequence associated to the detis’ x M — M relating the coho-
mology of M andM/S’. First of all, we shall use strongly thdtis almost fre€ in M\Z to get a better
description of the controlled forms o.

2.1. Decomposition of a dferential form. We fix {u, Up, U3} a basis of the Lie algebra &f with
[ug, Up] = Uz, [Uz,Ug] = up and Jus, us] = . We denote byX; € X, (M) the fundamental vector field
associated toi, i = 1,2, 3.

We endowM\Z with an$’-invariant Riemannian metrig,, which exists becaus# is compact. We
also fix a bi-invariant Riemannian metricon the Lie groups’. Consider now thei-orthogonalsS’-
invariant decompositio (M\X) = D & &, whereD is the distribution generated ldy. Since the action
® is almost free orM\Z, for each pointx € M\Z, the family {X;(x), Xo(X), X3(X)} is a basis ofD,. We
define thes’-Riemannian metrig on M\X by putting

/’LO(W].’ W2) If Wy, Wo € fX

pu(wi,wp) =4 0 if wy € &, Wo € Dy
5ij if wy = Xi(X), w2 = Xj(X)
We denote by = ixu € Ql(M\Z) the characteristic formassociated tai, i = 1,2,3. Since

Xi(X) = u(X, X;) = &, each diferential formw € Q' (M\X) possesses a unique writing,

3
W=+ ) XpApw+ Y XpAXgA @ +X1 AX2 AXg A L0,
p=1 1<p<q<3

where the coficients, w arehorizontal formsthat is, they verifyix (,w) = 0 for eachX € X, (M). This
is thecanonical decompositioof w. For exampleds = ((dB) + X1 AL, B+ X2 AL, B +X3 AL, B, for
any horizontal forng. SinceL, X| = X{y uj, With 1 <i, j < 3, then

LX1=LX2=L X3=0, L X2 = —L X1 =X

(4)
L, X3=-L X=Xz L, X5 =—-L X2 = X1

and we have the canonical decompositions
{ d¥; = e —-X2AX;3

g

(5) &+ X1 AX3

e — X1 AXo.

g

ConsiderU c M\ an equivariant open subset. df € Q' (M\Z, U) then the cofficients of its
canonical decomposition are horizontal forms®{M\X, U). The following Lemma is the key for
the construction of the Gysin sequence. Given an actidh, ain a vector spac& generated by the
morphismh: E — E, we shall write

(6) E™% ={ecE|h(e) = -,

the subspace afntisymmetric elementslotice thatj € S° acts naturally oS,

SNotice that this is not the five lemma.
6All the isotropy subgroups are finite groups.



GYSIN SEQUENCE . .. Jury 20, 2011 6

Lemma 2.2 A
Q (M)

) )

Proof. We consider the integration operator:

Q* (M) -3 3 3
L Q7 (M/S,Z/S),
given by:
f(< w >) = (—1)%ew Iyl T, -

It is a well defined dierential operator since

- the tubular neighborhoods of the Thom-Mather’s strucfuere invariant,
- the operator, i, i, vanishes oL, and
-y

dx,ix, i @ = 1, di, i, i, w = 0 for eachX € X,(M)’.

Every formy € Q;’S(M/SB, E/Sa) vanishes in a neighborhood Bf So, the product; A X, A X3 A y
belongs tcg;(M) (cf. (4)). Sincei, i, i, (X1 AX2 AX3Ay) =y then we have the short exact sequence

QM)

y 0 Ker' f —

Q,°(M/s’,2/s°)—0

By Lemmal.7, it suffices to prove the following:

(@) H (Ker* f) = (H”(Mgl))_zz.

(b) The associated connecting homomorphésvanishes.

(@)

{weQ (M)|ii,i, =0

Q,(M/s°)

Analogously, we defing1 (M, X), A (Z) andA (T, F). To get (a), it sdices to prove the following facts:
@D)H (A (M) = H' (A (2)) .

(@2)H (A (Z) = H(A(Z. F)).

For the sake of simplicity we pui (M) = Ker* {. In fact we haveA (M) =

@3)H (A (T, F)) = (H”(MSI))_ZZ.

(al)

7 LAiB = iBLA + i[A,B], VA, Be X(M)
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Consider the inclusioh: A (M,X) — A (M) and the restrictiolR: A (M) — A (), which are
differential morphisms. This gives the short sequence

0— A (M, %) —= A (M) —= A () —= 0.

Notice thatRoL = 0. This short sequence is exact since:

eThe operator R is an onto ma@onsidery € Q;(E). We know thatr(y) Q;(M) (cf. Lemmal.4).
The result comes from:

~ o (y) € Q;(M). Sincery, 71 are equivariant and-v,, f-v; are invariant.
~w iy iy iy o(y) = 0. Sincer, 71 are equivariant and rak (), X2(X), Xs(X)} < 2 for anyx € .
w R(<o(y) >) =< (c(¥) >=<v>.
e Ker Rc Im L. Considemw € Q;(M) withi, i, i, @ = 0andi, w; = 0 for j € {1,2,3}. Sinceroand
71 are equivariant an; = 0 onF theniXj o(w1) =0forje{l,2, é}. This gives< o(w1) >= 0. Finally,
we have< w >=< w—o0(w1) >= L(< w — o(wy) >) since(w — o(w1)); = w1 — (0(w1))1 = w1 —w; = 0.

Now, we will get (al) by proving that (A (M, X)) = 0. By definition of Verona’s forms we have

excision

AM,X) = A (M,D) = A (M\Z,D\X), whereD = Dy U D;. A straightforward calculation gives:

{w e Q' (M\Z,D\Z) [iyiy, i@ = 0andi, dw = 0for j e {1,2,3)}
Q'((M\2)/5°, (D\2)/5°) + {dB | g € Q*(M\Z, D\Z) andi i, i, B = O}

H*(ﬂ'(l\/l\z, D\Z)) =

Let w be a diferential form ofg*(M\Z, D\X) verifying iXSiXZixlw =0 andixj dw = Oforj € {1,2,3}.
Then - - - - - -
d(Xl A I, x, —-Xo A Ix;lx, w +X3 A |X2|x10))
B
w = +

—e1 A ixaixza) + & A ixaixla) — &3 A ixzixla) + W
(cf. (5)) with g € Q' (M\Z, D), verifying i, i, i, 8 = 0, anda € Q'((M\3)/s’,D/s’). This implies
H (A (M\Z,D\X)) = 0 and therH (A (M, X)) = 0.

(@2)

Consider the inclusioh: A (T, F) — A (X) which is a diferential morphism. It dices to prove
thatL is an onto map.

Let us consider a smooth functidn ]0, co[— [0, 1] verifying f = 0 on[3 [ and f = 1 on ]Q, 2].
Notice that the compositiofi-vy: M — [0, 1] is a smooth invariant map. So, for eaghe Q' (F) we
haveo(y) = (fovo)ryy € Q' (M). This diferential form verifies

~ o (y) € Q;(Z). Since (-vo) = 1 onAg theno(y) = 15y onAg\F. This gives §o(y))o = -

~ o (y) € Q;(Z). Sincerg is an equivariant map antyg is an invariant map.

> ixj o(y) =0for j € {1,2, 3} sincerg is an equivariant map ar¥} = 0 onF.

Then< o(y) >= 0 onA ().

Let < w > be a class ofA (). We can write:< w >=< w — 0((w)) >= L (< w — o((w)o) >) since

(w = ((w)0))o = wo — (07(w0))o = wo — wo = 0. This proves thdt is an onto map.
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(a3)
By definition of Verona’s dierential forms we have
Q (2\F, Ag\F)
Q((B\F)/S, (A0\F)/S°)

eXCISIOI’]

AEF)=A (T, Ay) = A (Z\F,Ao\F) =

The isotropy subgroup of a point &\F is conjugated t&" or N(S') (cf. [3, Th. 8.5, pag. 153]).
1

We consider the manifoldl = (Z\F)® . A straightforward calculation gives thatF is G-equivariant
diffeomorphic to . L ,
S Xy [ = (S7/87) Xyetyet T =8 %z, T

Notice thatl/Z, = (Z\F)/S". Putl’s the open subs&tn Ao of I'. Analogously we haveo\F = §”x, I
andly/Z, = (Ao\F) /S’.

TheZ,-action onS’ is generated byxg, X1, X2) — (—Xo, —X1, —X2)8. Then, theZ,-action onHO(SZ)
(resp. HZ(SZ)) is the identity Id (resp—1d). TheZ,-action onI" is induced by®(j, —). The Kunneth
formula gives

2

H(Q (5" xz, T, 5" x, To)) H(QSXFS X To)” )

H'(Q (2\F, A0\F))

[
H'(Q(s"xT.s’ xFo)) = (H'(s") e H'(I. ro))
(H'(S) e H' (L To) 2 @ (H(s 2)®H (N.T) % = (H'(0.To) 2@ (H (0. T0) 2
H'(T/Z,. To/Z,) & (H (1. T0) * = H((E\F)/S”, (80\F)/S) @ (H (. To)) 2,

and then

Q (Z\F, Ag\F)
Q((Z\F)/S°, (A0\F)/S°)
= () )

H'(A(Z\F. A0\F)) =

] (H@r) = = (7 (@P . @apy))

Consider the long exact sequence associated t@,Hmvariant pair(ESl, FSl):

B o ) )
) -7
Since the action of, on FS' = Fis trivial, then(H'(FSl)) * = 0. On the other hand, we have

_ZZ o _ZZ
>s' = M. This gives(H*‘z(zsl,Fsl)) :(H Z(MSI)) .

(b)

Notice that the connecting morphisénis defined bys([{]) = +[< d(¥1 AX2 AX3) AL >]. We have
6 = 0 sincel; = 0 (cf (al)). *

8This map is induced by: s* > §° defined byj(u) = u- j (see P, Example 17.23]).
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Theorem 2.3 Given any smooth actiob: S*x M — M we have the Gysin sequence
i i-3 3 3 i-2 1\\ %2 i+1 3 i+l
e H (M) = H M/ 25%) @ (H (M) = H (W/87) —— ™ (M) —— -

whereX is the subset of points of M whose isotropy group is infiniteZt -action is induced by § S’
and(-)"% denotes the subspace of antisymmetric elements.

Proof. Consider the short exact sequence

(8) 0—=Q,(M/S°) —=Q (M) 2,%

\Y —V Q;(M/SS) ’
take its associated long exact sequence and then, apply 8éming3) and Lemma2.2. *
2.4. Example.

Consider the connected suvh = CP? # CP? = (83 x [0, 1])/ ~, with
(z1,2),1) ~ (- 21,2- 2),1), =01,
forall ze St and @, z) € S® in complex coordinates. The product®finduces onM the action:
g-[nt=[g-ht], Vghesdvtelo,1].
For this action, we have:

2:(S3><{O,1})/~ESZ><{O,1}, F =0,

M/S3=1[0,1], ¥/S®=1{0,1}, M% ={N,S}x{0,1},

whereN andS stand for the North and South polesS3f TheZ,- action onM*" is determined by € S8,
which induces the antipodal map 8f and so, interchanges its poles. Thus, the exotic term pipetaas
in the central part of the Gysin Sequence is not trivial:

~Z

HA (M) = (H"(Mgl))_zz - (H(N,S}x{0,1))) *=RoR.

2.5. Morphisms. We describe the morphisms of the Gysin sequence .
@: H'(M/S”) — H'(M)

It is the pull-backr* of the canonical projection: M — M/S® (cf. Lemmal.?).

_ZZ

@: H (M) — H*’S(M/SS,E/SS)@(H“(Mgl))

We have already seen that the first component of this morpisisnduced byfss[w] = [iy,iy, Iy, @]
For the second component we keep track of the isomorphisres oy Lemma2.2 and we get that it is
defined by: o] — class({f. (w1 - o(t*wy))).



GYSIN SEQUENCE . .. Jury 20, 2011° 10

~Z

oF H**(M/SS,Z/SS)@(H”(Msl)) C— H(WS)

A straightforward calculation using sequencésand @) gives that the connecting morphiggnof the
Gysin sequence sends:

o [JeH’(M/s",2/8°) to (&2 + &+ &) A ¢ and

) 1\\ %2 w2 1 1\\ %2 .
o [£] € (H (MS )) = (H (ZS ,F* )) to [do- A € A 73¢] wheree is an Euler form of the
restrictiond; : §' x (711 (ZSl) \Zsl) — (111 (ZSI) \251) of ®.
Sinceef + € + € is not a Verona’s form, then it does not define a cIasBl“c(ﬁ\/l/SS). Nevertheless, it
does generate a class in the intersection cohomology gﬂé(M/Sg) (as in the semi-free case df]].
2.6. Remarks.
-7
(@) We have(H"(MSl)) ‘= H*(Msl)/H*(Msl/Zz)- Let us see that. The correspondeace—
w+ fw w-Jw
2 2
* 1 _ZZ * 1 * 1 * 1 _ZZ . . .
(Q (MS )) and henceH (MS ): H (MS /Zz)@(H (MS )) . This gives the claim.

)establishes the isomorphiSDﬁ(MSl) = ((f(MSl))ZZaa(ST(MSl))_Z2 = Q*(MSI/ZZ)GB

1
(b) Let us suppose that the action is semi-free, almost fréee. Then,j acts trivially onM® = F,
and hence, we have a long exact sequence

o H(M) > HP(M/S” F) - HY(M/S%) > H (M) - -+

(c) Let us suppose that there is not a poinMfvhose isotropy subgroup is conjugatedsto Then,
we have a long exact sequence

o> H(M) > HE (M8, 2/87) » HY(M/ST) 5 (M) > -+
. . .. gt 3 3 1
sincej acts trivially onM> = {x eM | Sy = S°orN(S )}.

2.7. Actions overs'.

Using the Gysin sequence we have constructed, we now gige @f kll the diferent conomologies
of aS’-manifoldM having the circle as orbit spateBy geometrical reasons, the orbit space is composed
by just one stratum, the whole circle. Following the naturthe orbits, we distinguish four cases.

(a) All orbits are of dimension 3. We ha®, = 1+t+t3+t*. Thisis the case of the manifofd xS,
wheres’ acts by multiplication on the left factor.

(b) All orbits are isomorphic t&”. We distinguish two cases following wether the coverlh‘i%1 —

MSl/Z2 = M/MSl is trivial or not. In the first case we haw®, = 1 +t +t? + t3. This is the case of the
manifoldS®xS', whereS® acts by multiplication on the left factor. In the second oasdaveP,, = 1+t,
as is the case of the manifcﬁ?iszSl whereS’ acts by multiplication on the left factor.

(c) All orbits are isomorphic t&®P". In this case, we have, = 1+t. This is the case of the manifold
RP” x S" whereS® acts by multiplication on the left factor.

(d) All orbits are points. We have,, = 1 +t. This corresponds to the manifofd whereS’ acts
ineffectively.

%In fact, we give the Poincaré polynomm), of M.
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