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Abstract

We construct a Gysin sequence associated to any snidatttion on a smooth manifold.

Given a semi-free smooth actidn S° x M — M, we have the Gysin sequefce

®

.. Hi(l\/l) @ Hi—3(M/Ss,MS3) ©) i+1

HM(M/Ss) o HE (M) —

where the morphisr is induced by the natural projectian M — M/S’, the morphismg is induced
by the integration along the fibers afand the morphisn® is the multiplication by theEuler class
[€] € H (M/s) (cf. [4)).

The main goal of this work is to extend this result to any sthaation ofS’. We obtain the following
Gysin sequence (cf. Theorefmd and paragraph 4.5)

e H (M) 2~ H™(M/S°,2/5°) @ (H“Z(Msl))_zz N (VI Ty S——

whereX is the subset of points d#l whose isotropy group is not finite, tl#-action is induced by the
product byj € S* and ()% denotes the subspace of antisymmetric elementsi(z). (

The organization of the work is as follows.

1. Thom-Mather’s structure Description of the singular manifolds arising from thei@ct

2. Verona'’s diferential forms Computation of the real cohomology of singular manifolgs b
using diferential forms.

3. Decomposition of a dferential form  Writing of a differential form in terms of characteristic forms
and horizontal forms.

4. The Gysin sequence Main result of this work.

“This work has been partially supported by the projects MTM266262 (Spanish Department of Science and Technol-
ogy) and EHU09-04 (University of Basque Country).
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1In this work,H " (X) stands for the singular cohomology of the spXasith real codficients.
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In the sequeM is a connected, second countable, Hausgdeithout boundary and smooth (of class
C>) manifold. We fix a smooth actiof: §° x M — M.

1. Thom-Mather structure. There are three possibilities for the dimension of the amtrsubgroup
Si of a pointx € M, namely: 0,1 and 3. So, we have ttienension type filtration

F={xeM|dims,=3jcx={xeM]|dms;>1cM={xeM]dims,>0}.

In this section, we describe the geometry of the triple X, F). The subsek is not necessarily a man-
ifold, but subsets = MS, T\F = {xe M| dims; =1} andM\X = {x € M| dim§; = 0} are proper
invariant submanifoldsof M. So we can find two invariant tubular neighborhood$/inry: To — F
andry: T, — Z\F. Over each connected component the structural group isthegonal group. Asso-
ciated to these tubular neighborhoods we have the followiags k = 0, 1):

~» Theradius mapvg: Tx — [0, o[, defined fiberwiselly by — |[u]. It is an invariant smooth map.

~» The dilatation mapdy: [0, co[xT, — Ty, defined fiberwiselly byt(u) — t- u. It is a smooth
equivariant map.
The family of tubular neighborhoodgy, = {To, T1} is aThom-Mather systemvhen:

0 = Y0°T1

(TM) { ;0 = 10T } onTo N Ty = 174(To N (B\F)).

Lemma 1.1 Thom-Mather systems exist.

Proof. We fix an invariant tubular neighborhoad: T, — F. It exists sinceF is an invariant closed
submanifold ofM. Since the isotropy subgroup of any pointffs the wholeS’, we can find an atlas
A = {90: UxR" — T(_)l(U)} of 79, havingO(n) as structural group, and an orthogonal actions’ x
R" — R" such that

(1) @(x, ¥(g,V)) = (g, #(x, V) VxeU,¥veR"andv¥geS’.

We writer;: So — F the restriction o, whereS is the submanifoldgl(l). Itis afiber bundle. There-
strictionty : (SoN(Z\F)) — F is also a fiber bundle whose induced atlaglis= {90: UxSy — rg‘l(U)},
wheresy " = {we s™" | dims;, = 1}.

The map2o: To\F — Sox]0, oo, defined by2o(x) = (9o (vo(X) %, X). vo(X)), is an equivariant dif-
feomorphism. Undet:

~> the mapry becomesy(; t) = 7y (y),

~» the mapvy becomesy( t) — t, and

~» the manifoldTy N (2\F) becomes$y N (£\F))x]0, ool.

Since the structural group af, is a compact Lie group, conditiori) allows us to construct an
invariant Riemannian metrig, on S, such that the fibers af; are totally geodesic submanifolds and
(T(So N E\F))* c ker(ré)*. Then, if we consider the associated tubular neighborhdodr; —
So N (X\F) we haverj o 7] = 7y,

We can construct now an invariant Riemannian metrie M\ F such that undegy:

~> the metricu becomegig + dr? on Syx]0, oof.

2We refer the reader to’] for the notions related with compact Lie group actions,tsas isotropy, invariant tubular
neighborhoods,. ..

3In fact, these manifolds may have connected components aiierent dimensions.

4For each connected componentof
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We consider the associated tubular neighborhgod’; — X\F. Verification of the property (TM) must
be done oy N T, where using’y, we get:

~> To N T1 becomed|x]0, oof.

~> 71 becomesy( t) — (77(y), ).
A straightforward calculation gives (TM) and ends the proof *

We fix a such systerfiy. For eachk € {0, 1}, we shall writeD, ¢ M the open subset*([0, 1[) and
call it thesoulof the tubular neighborhootl. We shall writeAg = Dy N X.

2. Verona’s differential forms. As it is shown in p], the singular cohomology d¥1 (resp.X) can be
computed by using tlierential forms orM\X (resp.Z\F). These are the controlledftirential forms,
the tool we use in this work. The complexadntrolled formgor Verona’s formyof M andX is defined

by

(@) Tjw1 = w onD\Z
Q (M) = {weQ (M\Y)|Iw; € Q(Z\F) andwo € Q' (F) with { (b) Tjwo = w 0NDE\Z

(C) Towo = w1 ONAQ\F
Q,(2) = {yeQ(E\F)|Iyo e Q(F)with t5yo =y onA\F}.

Following [5] we know that the cohomology of the compl&(M) (resp.Q, (%)) is the singular coho-
mologyH" (M) (resp.H(Z)). We also have the complexesrefative controlled formsQ, (M, %) = {w €

Q. (M) | w; = 0} andQ (X, F) = {y € Q. (Z) | yo = O}.
SinceM is a manifold, controlled forms are in factfirential forms.

Lemma 2.1 Any controlled form of M is the restriction of affirential form of M.

Proof. First, we construct a sectienof the restrictionp: Q (M) — Q (2) defined byp(w) = w;. Letus
consider a smooth functiof: ]0, co[— [0, 1] verifying f = 0 on [3 o[ and f = 1 on ]0, 2]. Notice that
the compositiong-vy: M — [0, 1] and fev;: M\F — [0, 1] are smooth invariant maps. So, for each
y € Q () we have

(2) a(y) = (fvo) - thyo + (1 = (fro)) - (Fov)riy € Q(M).
This differential form is a controlled form since

(@) Since f-v1) =1 0onDy, (fovg) = 0 onM\T, and (TM) then we have

*

o(y) = (fovo) - Ta7gyo + (1 = (fo0)) - 71y = 71 ((Fov0) - 7oy0 + (1 = (f10)) - ¥)
onD;\X. This gives ¢ (y))1 = (f-vo) - t5v0 + (1 = (fovg)) - . Sinceryyo = ¥ onAg\F then
(1= (fovg) -y + (L - (forv0)) -y = 7.

(b) Since f-vo) = 1 onDg then we haver(y) = 75yo onDo\X. This gives ¢(y))o = vo-
(c) We have ¢ (y))1 = ¥ = 7570 = 75(0(¥))o ON Ao\F.

This mapo is a section op sincep(o(y)) = (o(y))1 = .
In particular,o(w — o(o(w))) = 0 for eachw € Q;(M). As o(p(w)) € Q' (M) (cf. (2)) and coincides
with w in the open setl§y U D;)\X we conclude thab) can be extended tdl. )

2.2. Remark. Notice that the original germ-like definition of Verona'stérential forms (cf. §]) is
slightly different from ours. Our Verona forms are more rigid in a fixed nleaghood of the stratum,
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which will prove useful enough, as we use tools like excisiod retraction. Of course, we prove in the
Appendix that the cohomologies of our Verona complexesta®tdinary ones, like happens i#.[

2.3. Invariant forms. Denote byx (M) the subbundle of M formed by the vector fields d¥l tangent
to the orbits of®. A controlled formw of M is aninvariant formwhen

Lw=0

for eachX € X,(M) of the actiond. The complex of invariant forms is denotedQ:y(M). The inclusion
Q;(M) — Q;(M) induces an isomorphism in cohomology. This a standard aegtuimased on the fact
thatS’ is a connected compact Lie group (ct, Theorem I, Ch. 1V, vol. 11]). So,

(3) H'(Q,(M)) = H'(Q,(M)) = H'(M).

2.4. Basic forms. A controlled formw of M is abasic formwhen
hw=idw=0

for eachX € X, (M). The complex of the basic forms is denoted&b@(M/S3). In this work, we shall
use the following relative versions of this complex;(M/s’, £/5%) = Q,(M/s°) n Q, (M. Z), as well as
Q,(2/8°.F) = Q) (2/8°) nQ,(Z. F).
Lemma 2.5

H'(Q,(M/s7)) = H'(M/s") and H(Q,(M/s",2/87)) = H'(M/S”, 5/5°).

Proof. See Appendix. *

3. Decomposition of a diferential form. PutN = M\X which is an invariant open subset lgf. We
denote bydy: S° x N — N the restriction ofb. It is analmost free actio

We denote bysu(2) the Lie algebra of’. We fix {uy, Uy, Ug} a basis ofsu(2) with [ug, U] = us,
[uz,us] = up and Jus, u3] = up,. We denote byX, € X,(N) the fundamental vector fieldssociated to
u € su(2). The mapX: su(2) — X, (N), defined byu — X,, is a Lie algebra morphism. For the sake of
simplicity, we shall puiX, = X fori =1,2,3.

We endowN with a S’-invariant Riemannian metrigo, which exists because of the compactness
of S3. We also fix a bi-invariant Riemannian metnicon the Lie groupS’. Consider now theuo-
orthogonals3-invariant decompositiom N = ker(ny), @ &, whereny: N — N/s” is the canonical
projection (a submersion). Since the actibg is almost free then, for each poirte N, the family
{X1(X), X2(X), X3(X)} is a basis of kefry).. We define the’-Riemannian metrig on N by putting

po(Wi, Wo)  if wy, Wy € &
pu(wy, W) =4 0 if wy € &, W, € ker(my),
v(u,V) it wp = Xy(X), W = Xy(X)

We denote by, = ixu € Q'(N) the characteristic formassociated ta € su(2). For the sake of
simplicity, we shall put,, = x; fori = 1,2, 3. Since

(4) Xi(X) = u(Xi, Xj) = v(u;, uj) = 6

SAll the isotropy subgroups are finite groups.
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then the characteristic formg, X, andx3 do not vanish at any point é\.
Applying the well-known equality of operators

(5) Laig = igla +ijag, VA, Be X(M)
to the metriqu, we obtainL, X, = X[y YU,V € su(2). In particular:

LY=L X2=L X3=0, L, X2 = —L, X1 = X3

(6)
LXng = _LX3X1 = —XZ LXZXS = _LX3X2 :Xl.

A differential formw € Q'(N) is horizontalwheniy,w = 0 for eachu € su(2). All the differential
forms of N can be expressed in terms of horizontal and character@tics. In fact, each lierential
form w € Q (N) possesses a unique writing,

3
W=+ ) XpApw+ Y XpAXgA @ +X1 AX2 AXg A Ly,
p=1 1<p<q<3

where the cofficients,w are horizontal forms of2 (N) (cf. (4)). This is thecanonical decompositioof
w. For example, we have:

ds = (@A) +xiAL, B+XaAL B+XsAL B
% dyi1 = e —-Xy2AX3

dy, = e +X1AX3

d¥z = &-X1AX>

wheres € Q' (N) is a horizontal form.
ConsiderU c N an equivariant open subset.dfe Q (N, U) then the cofiicients of its canonical
decomposition also belong £ (N, U).

4. The Gysin sequence.The starting point for the construction of the Gysin seqeessociated td®
is the inclusion : Q;(M/Ss) — Q;(M). It is a well defined dterential operator since every basic form
is invariant. Associated to this operator we have the loragegequence

e H (M) =2 H(Coker 1) —2- H(M/S) —2 o (M) —= -+

where we have performed the substitutions3)fgnd Lemma2.5. The operatow is justz* (cf. 5.6).
This is theGysin sequence

—V

It remains to compute the cohomology of the quofie@ker| =
Q; (M/s°)

. For that purpose we
consider the integration operator:
f: Cokerl — Q,*(M/s”,2/5°),

given by:
f(< w>)=(1%%0 i i w

X3 X Xp 7"

It is a well defined dierential operator since

5An element of this quotient is denoted by- >.
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- the tubular neighborhoods of the Thom-Mather’s strucfuege invariant,
- the operator, i, i, vanishes oI, and

-y i iy 0 = i diy iy iy @ = 0 for eachX € X, (M) (cf. (5)).

Aformy € Q;°(M/s’,£/5%) vanishes in a neighborhood BfS’. So, the product; A Xz AXs Ay
belongs tc(_fv(M) (cf. (6)). Sincei, i, i, (X1 AX2 AX3Ay)=ythen we have the short exact sequence

(8 0—= Ker* { —— Cokerl| —f>Q*V‘3(M/S3,2/S3) —0

As we shall see later, the connecting morphim&fyanishes. Thus, we now have to focus on the
computation oH*(Ker* f) For the sake of simplicity we p# (M) = Ker* f; in fact we have

{weQ (M),
Q,(M/s°)

. 10.):0}
A (M) =

Using this last expression, we define analogoés() andA (Z, F). The following Lemmas are devoted
to the computation of the cohomology Af(M).

Lemma 4.1
H'(A(M)) = H'(A(D))

Proof. Consider the inclusioh: A'(M,X) — A'(M) and the restrictioR: A" (M) — A (), which are
differential morphisms. This gives the short sequence

(9) 0——=A (M) —=A (M) —=A(X)—=0

In order to get this Lemma we prove the following:
(i) The sequenced] is exact.
(i) H'(A(M, X)) = 0.

(i)

SinceRoL = 0 it suffices to prove thaRis an onto map and that K& c Im L.

eThe operator R is an onto ma@onsidery € Q*V(Z). We know thatr(y) € Q*V(M) (cf. Lemma2.1).
The result comes from:

~s o (y) € Q;(M). Sincery, 71 are equivariant maps arfdvy, f-v; are invariant maps.

iy o(y) = 0. Sincerg, 71 are equivariant maps and ragha(x), Xz(x), Xs(X)} < 2 for any
XeX.

w R(<o(y) >) =< (c() >=<y >.

e Ker Rc Im L. Considemw € Q*V(M) withi, i, i, w = 0andi, w; =0 for j € {1,2,3}. Sincerp and
71 are equivariant maps arXf = 0 onF thenixj o(wy) = 0for j € {1,2,3}. This gives< o(w;) >= 0.
Finally, we have< w >=< w — 0(w1) >= L(< w — o(w1) >) since(w — o(w1)); = w1 — (0(w1))1 =
w1 — w1 = 0.
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(ii)
By definition of Verona’s dterential forms we have

Xcision

A(M,3) = A (M,D;) "="A(M\Z, D;\%).

PutN = M\X andU = D;\X as in Section 3. A straightforward calculation gives:

{we @ (NU) [iyi,iqw = 0andi, dw=0forje{1,23)

H'(A(N.V)) = o' (N/s°.U/8%) + (dB | 5 € @ '(N.U) andi, i, i, 5 = O]

Let w be a diferential form ofQ (N, U) verifying Iy, 1,0 =0 andiXj dw =0forje{1,2 3}. Then

d()(]_ A iX3iX2w —-Xo A ix3ixla) +X3 A ixzixla))

B
(10) w = +
-1 A ix3iX2(,L) +6& A ix3ixla) -6 A ixzixla) + W

a

(cf. (7) and €)) with p € Q" (N.U), verifying i, i, i, 8 = 0, anda € Q'(N/S".U/s’). This implies
H (A(N,U)) = 0 and therH (A (M, X)) = 0. .

Lemma4.2
H'(A@®) =H'(AE.F)).

Proof. Consider the inclusioh: A'(Z, F) — A (X) which is a diferential morphism. It sices to prove
thatL is an onto map.

Let us consider a smooth functidn ]0, co[— [0, 1] verifying f = 0 on[3 [ and f = 1 on ]Q, 2].
Notice that the compositiofirvg: M — [0, 1] is an smooth invariant map. So, for eagke Q' (F) we
havea(y) = (fovo)ryy € Q@ (M). This differential form verifies

~ o (y) € Q (2). Since E-vg) = 1 onAg theno(y) = 74y onAo\F. This gives §o(y))o = v.
~ o(y) € 9;(2). Sincerg is an equivariant map anthyg is an invariant map.
> ixj o(y) =0for j € {1,2,3} sincerg is an equivariant map arXi = 0 onF.

Then< o(y) >= 0 onA' ().

Let < w > be a class oA (X). We can write:< w >=< w — 0((w)g) >= L (< w — o((w)o) >) since
(w = 0((w)0))g = wo — (0(wo))o = wo — wo = 0. This proves that is an onto map. *

Given an action of, on a vector spacg, generated by the morphism E — E, we shall write
(11) E% ={ecE|h(e) = -},
the subspace a@ntisymmetric elements

Lemma 4.3 .
H (AR F) = (H (M)

where thez,-action is induced by the product b)EjS3.
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Proof. By definition of Verona’s dierential forms we have

Q' (Z\F, Ao\F)
Q'((Z\F)/S°, (A0\F)/5°)

excision

A F)=AEA) = A((Z\F,Aq\F) =

The isotropy subgroup of a point &iF is conjugated t&" or N(S') (cf. [2, Th. 8.5, pag. 153]). We
consider .
I = {x € Z\F | S} is conjugated tN(S ")},

which is an invariant submanifoldf Z\F. Proceeding as in the proof of Lemrfial we can construct
an invariant tubular neighborhoad T — I" of I' on £\ F such that:

(TM’) { To = To°T }OnT A AO — T—l(r N AO)

Yo = Vo°T

The inclusionL: A (Z\F, (Ag\F)UT) — A (Z\F, A¢\F) and the restrictiorR: A (Z\F, Ag\F) —
A(I',T N Ap) are diferential morphisms. In facR(< w >) =< *w > where:: T’ — Z\F is the natural
inclusion. This gives the short sequence

0—— A (Z\F, (Ao\F) UT) ——= A (Z\F, Ag\F) —= A (I,T N Ag) —= 0

In order to get this Lemma we prove the following facts:
(i) The sequence is exact.
(i) H(A(,IT N Ag)) = 0.

(iii) H (A (2\F, (Ao\F) UT)) = (H*'Z(MSI))_ZZ .

(i)

eThe operator R is an onto mapet us consider a smooth functidn ]0, co[— [0, 1] verifying f =0
on[3 o[ and f = 1 on]02]. Notice that the compositiofi-v: £\F — [0, 1] is an smooth invariant
map, wherey is the radius map associated to the invariant tubular neigidodr: T — I'. So, for
eachy € Q (I, T N Ap) the diferential formo-(y) = (f-v)r*y belongs ta (Z\F, Ao\F) (since (TM’) and
f = 0 outsideT). Sincef =1 andr = Id onI thenR(< o(y) >) =< vy >. So, the operatdr is an onto
map.

eKerRc Im L. Letw € Q(2\F, Ao\F) with 'w € Q(I/S°, (TN Ag)/S°). Since f-v is invari-
ant andr is equivariant thenr(t*w) € Q*((Z\F)/Ss,(AO\F)/S3). Then< w >=< w - o(fw) >=
L(< w-o('w) >) sincer*(w — o('w)) = t'w — t'o('w) = t'w — 'w = 0.

(ii)

The isotropy subgroup of any point fis conjugated to the normalizé(S?). So, we have the
homeomorphisms

NED = §° %0 TNED = RP° 5 TNE) = RP % TS,

3
=5 Xyneh) NG

"This manifold may have connected components witfedent dimensions.
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Analogously we hav& N Ag = RP® x rn AO)/Ss. The Kunneth formula gives
" Q(I.T' N A) ) _
Q (/8% (T N AY)/S°)
H(RP') @ H'(I/S", (TN Ag)/S7) = 0

(Q(RP) 0 Q (/8% (TN AY)/S”)
Q (/8% (0 AY)/S°)

H (AT N Ag))

(iii)
Write A = v}([0, 1[) the soul of the tubular neighborhoed T — I'. Since this retraction preserves
Ao\F (cf. (TM")) then

H(AE\F (A\F)UT)) = H(AE\F. (A\F) U A))

excision

=" H(A\(F UT), (A\(F UT) U (A\D)).
The isotropy subgroup of any point Bf = £\(F U T) is conjugated t&". So,
=5 XNt 2,81 - (83/81) XN(shy/st 2,81 =’ Xz, ZISI'

Notice thatZ’Sl/Z2 = 3//S°. PutU the open subset\\(F UT) U (A\I) of ¥’. Analogously we have
1 1
U =5 xz, U andU® /Z, = U/s".
TheZ,-action ons” is generated byx, X1, ;) = (~Xo, —X1, —X;)°. Then, theZ,-action onH’(s’)

(resp.H*(s°)) is the identity Id (resp-Id). TheZ,-action onz’®" is induced by the product biye S°.
The Kunneth formula gives

(D) = Hla(e 5 v (el s o))
- o swsl»%:(w&aw(vsiugvfz
- ()R () s (o (a0
e ) e e ()
= (Z/S U/S) (( ))22
and then
N

Q
_ (H ((2\(Fur))s .((Ao\(F UT) U (A\D))* )) ;
excision (H (ZS (Ao U A ))—Zz
l

retractlon (

> (FuT) )) E

8This map is induced by: s’ - s’ defined byj(u) = u- j (see [, Example 17.23]).
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Consider the long exact sequence associated t@,Hmvariant pair(ZSl, (Fu F)Sl):

) ) () o) -

-Z
Since the action o, on (F U l")Sl is the trivial one theréH'((F U F)Sl)) * = 0. On the other hand, we

1 1 1 1 _Zz e 1 _Zz
havezs = M<'. This gives(H“(zS (FUTY )) :(H Z(MS )) . N

Theorem 4.4 Associated to any smooth actidn S° x M — M we have the Gysin sequence
—_— . ' i = i+ i+
.. Hl(M)_>H|—3(M/83,Z/Sa)@(H._z(Msl)) 2—>H l(M/Sa)—>H l(M)—>

whereX is the subset of points of M whose isotropy group is not fithi@Z,-action is induced by the
product by je S’ and(-)"% denotes the subspace of antisymmetric elements.

Proof. If we prove that the connecting morphisimH°(M/s’, £/5%) — H™(Ker" f) of the long exact
sequence associated &) yanishes then we shall get that

-Z
H*(Cokerl) LemmaZ.5 H*ia(M/SS,Z/SS) ® H*(Ker' JC) Lemma4.3 H*is(M/SS,Z/SS) ® (H*Z(Msl)) 2 '
Now the Gysin sequence will come from the short exact sequenc
(12) 0—Q;(M/s’) —~Q (M) — Cokerl —>0,

since @) and Lemma&.5.
Notice that the connecting morphishis defined by([{]) = +[< d(¥1 AX2 AX3) A >]. We have
6 = 0 sincel; = 0 (cf. Lemmad.1). *

4.5. Morphisms. We describe the morphisms of the above Gysin sequence.
@©: H'(M/s%) — H (M)

It is the pull-backr* of the canonical projection: M — M/S (cf. Remark 5.9).
-Z

@: H (M) — H**3(M/S3,2/S3)@(H*’Z(MSI)) i

We have already seen that the first component of this morpisisnduced by the integration along
the fibers ofr, that is, it is given byfa[w] = [i, i, i, w].

For the second component we keep track of the isomorphisres @y Lemmat.3 and we get that
it is defined by:

[w] = Class(]cg2 (w1 - O'(L*wl))) ,

wherefsz is the integration along the fibers of the canonical progectr,: S x =E\(F ul"))Sl —
E\(FUD)* .
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®: H*'3(M/83,Z/S3)€B(H*'Z(Msl))_zz — H(W/sY)

A straightforward calculation using sequenc&sand (L2) gives that the connecting morphiggnof the
Gysin sequence sends:

o [JeH(M/S%2/8")to [(e% +&+6) A g];
o [£] € (H"'z(MSl))_Zz to [dor(e; A pr} €)] wheree, is the canonical volume form &f .

Since€? + € + € is not a Verona’s form, then it does not define a cIasBl‘E(ﬂ\A/S3). Nevertheless, it
does generate a class of the intersection cohomdibiQM/Ss) (as in the semi-free case ¢f]].

4.6. Remarks.
(a) We have

) - o).

*(MSl/ZZ)

w+ v w-|
2 72

o)« o o) o)) - o ) o)

1 1 1 -Z
and therH*(MS ): H*(MS /Zz)@(H*(MS )) * This gives the claim.

Let us see that. The assignment> ( w) establishes the isomorphism

(b) Let us suppose that there is not a poinMbfvhose isotropy subgroup is one dimensién@hen,
we have a long exact sequence

N Hi(M) . Hi_3(M/Ss, F) . HM(M/Ss) - HM(M) e

sincej acts trivially onM®" = F. This case contains the semi-free, almost-free and fréensct

(c) Let us suppose that there is not a poinkbfvhose isotropy subgroup is conjugatedtd. Then,
we have a long exact sequence

o H(M) > HE (M8, 2/87) » HY(M/ST) 5 (M) > -+

. . .. st 3 3 1
sincej acts trivially onM> = {x e M | Sy =S orN(S )}.
5. Appendix. We give a proof of Lemma.5.

5.1. Stratification. We shall use in this Appendix the orbit type stratificatiSp of the action®
(cf. [2]). This partition is determined by the equivalence relato~ y Sf( conjugated t@i, and
its elements are invariant submanifolds. For example, tmnected components &f, ' andX\I" are
elements ofSy while those oz andM\X may not be.

*Thatis,s = F = MS .
10Thatis,= = F UT.



GYSIN SEQUENCE . .. 2 Janvier 2010 12

depthSy, is defined to be the largeistor which there exists a chain of stréfg < S; < --- < S;.

This stratification is endowed with the orde®; < S, @ S; ¢ S,. Thedepthof Sy, written

5.2. Integration. The isomorphism we construct for proving Lem&&is given by integration. Since
the integration of controlled forms cannot be done diregtlysingular simplices we introduce an auxil-
iary complex.

> S*(M/S3) denotes the complex generated by the singular simplicéd/sf. The associated
cochain complex i§*(M/S3) = Hom (S*(M/SS),R).

~ A liftable singular simplexf M/S is a continuous map: A — M/S’ such that:

(a) there exists a smooth m@p A — M with 70 ¢ = ¢, and
(b) the pullbacl@_l (§) Is a face ofA, for each stratun® € Sy.

We shall say thap is alifting of .
~> LS (M/s°) denotes the complex generated by the liftable singular lgemof M/s’. The asso-

ciated cochain complex lsS*(M/S3) = Hom (LS*(M/S3),R).

Now, integration over these simplices makes sense.

Lemma5.3 The mapQ*v(M/S3) N LS*(M/S3), defined by, w = [, ¥ w, is awell defined gferen-

tial operator.

Proof. The only problem might come from the non uniqueness of thimgjf¢ (cf. (a)). Since the
differential formw is invariant, then it sfiices to prove the following statement:

“Let w be a diferential form oni(M/S3). Given two lifting mapsy; andy, of a liftable
singular simplexe: A — M/S’, there exists a smooth mém: A— S° with g, = g« ¥y.”

Lett be a point of and letS; be the stratum containing (t). Condition (b) gives/1(A) c S;. Consider

a stratunS < S, meetingwl(z). Condition (b) gives/;1(A) ¢ S. ThenS; NS # 0, that is,S; < S. We
getS = S; and therefor@/1(A) c S;. By the same reason, we find a strat8pcontainingy,(A). Since
Yy = mep thenn(S1) N (Sy) # 0. This impliesS; NS, # 0 and thereforés; = S,. The result comes
now from the fact that the projectiont S; — S/S’isa homogeneous bundle. *

So, we have the following diagram offtBrential morphisms:

Q,(M/s°) L LS'(M/s%) <2—s'(Mm/5°),

wherep is the restriction. We define the statement
B(M) = “The morphismsf andp are quasi-isomorphisms”

In a similar way we defin€@3(M, X). The goal of the Appendix is to provg(M) and3(M, X), which
will give Lemma2.5. This is done in several steps.

11Here,& is the interior ofA.
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5.4. First Step: If all the orbits have the same dimension the (M) is true. Notice first that we
haveQ,(M/s’) = Q'(M/S’). We proof$(M) by induction on the depth ay.

e depthSy = 0. Since the actionb: S° x M — M is a homogenous bundle then the complex
LS*(M/S3) is generated by the smooth simplices of the manifdits’. We know that the restriction

LS*(M/SS) <L S*(M/SS) is a quasi-isomorphism. Now the de Rham Theorem gi/@g).

e Induction. ConsideS c M the union of the minimal strata &),. It is an invariant submani-
fold'? with depthSs = 0 which givesP(S). Fix r: T — S an equivariant tubular neighborhood $f
Associated to the open coverifigl\S, T} of M\X we have the Mayer-Vietoris commutative diagram

0——=S((T\9)/5") ——=S(T/5°) @ LS ((M\S)/S*) ——S'(M/S") —0

| | |

0—=LS'((T\S)/8°) —= LS (T/5°) @ LS'((M\S)/S°) —= LS (M/S") —>0

T | T

0——=Q((T\8)/8") ——= ' (T/5") 8 Q' ((M\S)/5”) —— @' (M/S°) ——0
We shall denote this kind of diagrams by:

0= P(T\S) = B(T) & B(M\S) = B(M) = 0.

The first and second lines are exact since linear subdiagioeserve (liftable) singular simplices.
The third row is exact since the coverifig\S, T} possesses a subordinated partition of unity made up
of smooth invariant maps (for exampld,— (f-v), f-v} wherev is the radius map associateddp The
Five’'s Lemma givesB(T\S), B(T), B(M\S) = B(M).

Since depthSt\s < depthSy and depthSy\s < depthSy then, by induction hypothesis, we have
B(T\S) andB(M\S).

Consider the mapi: T x [0,1] — T defined byH(x,t) = d(t, X) (the dilatation map associated to
7). It is an equivariant homotopy between and the identity map of, wherej: S < T is the natural
inclusion. So, restrictionsS'(T/s°) — LS'(S/s%), S'(T/s°) — S'(S/87) andQ'(T/5°) - Q'(s/°)
are quasi-isomorphisms. Then we g€i) since we hav&i(S) (depthSs = 0).

5.5. Second StepB(M\F) = PB(M). Associated to the open coverifigl\F, To} of M we have the
Mayer-Vietoris commutative diagram

0= B(To\F) = $(To) ® B(M\F) = B(M) = 0.

The first and second rows are exact since linear subdivigiceserve (liftable) singular simplices. The
third row is exact since the coverifdM\F, To} possesses a subordinated partition of unity made up
of invariant controlled functions (for examplé€l — (fovo), fovo} cf. 4.2). The Five’s Lemma gives:
B(To\F), B(To), B(M\F) = B(M).

SinceTy\F does not possess any fixed point tAigiM\F) = B (To\F).

Consider the mapi: Ty x [0,1] — Ty defined byh(x,t) = do(t, X). It is an equivariant homotopy
betweeny-ry and the identity map of,, wherej: F — Ty is the natural inclusion. So, restrictions
LS'(To/S°) - LS'(F) andS'(To/S°) — S'(F) are quasi-isomorphisms. Moreover, since the homotopy

12This manifold may have connected components witfedént dimensions.
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H preserves the Thom-Mather structure, then the restriéli/cémo/83) — Q' (F) is a quasi-isomorphism.
Then we getB3(Ty) since we have3(F) (cf. First Step).

5.6. Third Step: B(M\F) is true. Associated to the open coverigiyl\X, T;} of M\F we have the
Mayer-Vietoris commutative diagram

0= P(T1\X) = B(T1) @ B(M\Z) = B(M\F) = 0.

The first and second rows are exact since linear subdivigiceserve (liftable) singular simplices. The
third row is exact since the coverifdM\X, T,} possesses a subordinated partition of unity made up
of invariant controlled functions (for exampl€l — (f-v4), fov1} cf. 2.1). The Five’'s Lemma gives:

B(T1\Z), B(T1), andB(M\Z) = B(M\F).

From First Step we geg(M\X) andB(T,\X).

Consider the mapi: T; x [0, 1] — T, defined byH(x,t) = 01(t, X). It is an equivariant homotopy
between-r; and the identity map of;, wherey: (£\F) < T, is the natural inclusion. So, the restrictions
LS (T1/S°) > LS'((2\F)/S°) andS'(T1/S°) — S'((Z\F)/s) are quasi-isomorphisms. Moreover, since

the homotopyH preserves the tubular neighborhogqdhen the restrictiom*v(Tl/Ss) - Q*((Z\F)/Ss)
is a quasi-isomorphism. Then we @g&fT,) since we hav&i(X\F) (cf. First Step).

5.7. Fourth Step: Notice that we have proved tha3(M) is true.

5.8. Fifth Step: (M, X) is true. By definition of controlled forms we have,(M/s”,£/s°) =

Q*(M/S3, (Do U Dy) /83). We have seen in Second Step and Third Step@aetracts equivariantly to
F and thatD, retracts equivariantely tB\F, this last retraction preservirig,. So, we have

PB(M, Do U (Z\F)) = B(M,Dg U D;) &= B(M,X).
Associated to the tripleM, Do, £\F) we have the commutative diagram
0= P(M, Do U (Z\F)) = B(M, Dg) = B(Z\F, Do N (Z\F)) = 0.

The first and second rows are clearly exact. The third row @&esince 2). The Five’'s Lemma gives:
B(M, Do), B(Z\F, Do N (Z\F)) = B(M, Do U (£\F)). The two following items end the proof, the
Appendix and the article.

e B(M, Do) is true. SinceDy retracts equivariantly t& then3(M, F) < B(M, Dy). Associated
to the pair M, F) we have the commutative diagram=d (M, F) = $(M) = B(F) = 0. The
first and second rows are clearly exact. The third row is atsatgsee proof of Lemmé.2). The
Five's Lemma gives$(M), B(F) = B(M, F). But we haveli(M) (cf. Forth Step) andi(F)
(First Step).

e B(Z\F, Do N (X\F)) is true. Associated to the open coverifgyv,*([0, 1.5]), v5*(]0, 3.5[) N =} of
>\F we have the Mayer-Vietoris commutative diagram:

0= P(Z\F, DoN(Z\F)) = B(E\vp ([0, L5])@B(v5 (10, 3.5DNE), DN (Z\F)) = B(=nvy*(11.5,3.5[)) = 0.

The first and second rows are exact since linear subdivipi@serve (liftable) singular simplices.
The third row is exact since the coverif®)v,*([0, 1.5]), v;*(]0, 3.5[)NZ} possesses a subordinated
partition of unity made up of invariant controlled functsfior example{ f-vg, 1 — (f-vg)} cf. 2.1).
The Five's Lemma gives:

B(Z\v5 ([0, 1.5])), B(v51(10, 3.5 NZ), DoN(Z\F)), B(ENv,*(]1.5,3.5))) = B(Z\F, DoN(Z\F)).
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From First Step we geB(Z\v,*([0, 1.5])) and B(Z N v,*(]1.5,3.5[)). Finally, sinceDo N X is
equivariantly difeomorphic to $,N%)x]0, oo then®(v51(]0, 3.5[) NE), DoN (Z\F)) &= B((SoN
2)x]0, 3.5[), (So N £)x]0, 1[)). Retracting the second factor, we gefv;*(]0,3.5[) N %), Do N
(E\F)) = PB(SoN Z,SgNX). ButP(SeNZ,SgNZ)is clearly true! *

5.9. Remark. Keeping track of the inclusioh: Q;(M/SS) — Q*V(M) one shows that it induces the
morphismzr*: H*(M/S3) — H'(M).
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