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Some new thin sets of integers in

Harmonic Analysis

Daniel Li,

Hervé Queffélec, Luis Rodŕıguez-Piazza

Abstract. We randomly construct various subsets Λ of the integers which have both

smallness and largeness properties. They are small since they are very close, in various

meanings, to Sidon sets: the continuous functions with spectrum in Λ have uniformly

convergent series, and their Fourier coefficients are in ℓp for all p > 1; moreover, all

the Lebesgue spaces L
q

Λ
are equal for q < +∞. On the other hand, they are large in the

sense that they are dense in the Bohr group and that the space of the bounded functions

with spectrum in Λ is non separable. So these sets are very different from the thin sets

of integers previously known.

Résumé. On construit aléatoirement des ensembles Λ d’entiers positifs jouissant si-

multanément de propriétés qui les font apparâıtre à la fois comme petits et comme

grands. Ils sont petits car très proches à plus d’un égard des ensembles de Sidon: les

fonctions continues à spectre dans Λ ont une série de Fourier uniformément conver-

gente, et ont des coefficients de Fourier dans ℓp pour tout p > 1; de plus, tous les

espaces de Lebesgue L
q

Λ
cöıncident pour q < +∞. Mais ils sont par ailleurs grands

au sens où ils sont denses dans le compactifié de Bohr et où l’espace des fonctions

bornées à spectre dans Λ n’est pas séparable. Ces ensembles sont donc très différents

des ensembles minces d’entiers connus auparavant.
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– random set – p-Rider set – Rosenthal set – p-Sidon set – set of uniform
convergence – uniformly distributed set.
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Introduction

It is well known that the Fourier series of an integrable function defined on
the unit-circle T = R/2πZ of the complex plane C can be badly behaved. For
example, it is well known that there exist continuous functions whose Fourier
series is not everywhere convergent (see [30], Th. 18.1, and Th. 19.5 for the
optimal result), and integrable ones with everywhere divergent Fourier series
(see [30], Th. 19.2 for instance; see also [29]).

The problem of thin sets of integers is the following: instead of considering
all the integrable functions on T, or all the continuous ones, we consider only
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those whose spectrum (the set where their Fourier coefficients do not vanish)
is contained in a prescribed subset Λ of the integers Z. This set Λ will be said
“thin” if the Fourier series of these functions behaves better than in the general
case. A typical example is Λ = {1, 3, 32, . . . , 3n, . . . }. It is well known (see [62],
for instance) that every integrable function f with spectrum in Λ (f ∈ L1

Λ) is
actually square integrable, and that every continuous function f with spectrum
in Λ (f ∈ CΛ) has a normally convergent Fourier series (equivalently f̂ ∈ ℓ1).

In his seminal paper [54], W. Rudin defined two notions of thinness for Λ: Λ

is a Sidon set if f ∈ CΛ implies that f̂ ∈ ℓ1, and Λ is a Λ(q)-set for some q > 1,
if f ∈ L1

Λ implies that f ∈ Lq. These concepts may as well be defined in the
more general setting of a compact abelian group G equipped with its normalized
Haar measure, and for a subset Λ of its discrete dual group Γ.

W. Rudin studied the general properties of those sets and the connection
between the two notions. In particular, he showed that Sidon sets are Λ(q)-sets
for all q < +∞, and that, more precisely:

(0.1) Λ Sidon implies ‖f‖q ≤ C
√
q‖f‖2 for every Λ-polynomial f and for every

q ≥ 2, where C is a constant which depends only on the Sidon constant
of Λ.

Since then, several new notions of thin sets emerged. These include p-Sidon
sets (see [2], [3], [4], [5], [14], [18], [21], [23], [24], [34], [47], [60]), and sets of
uniform convergence (see [1], [19], [20], [21], [26], [33], [44], [45], [56], [57]): every
continuous function with spectrum in such a set has its Fourier seriesin ℓp or
uniformly convergent, respectively. But the examples of such sets were always
nearly the same: products (sometimes “fractional products”: [3], [4], [5]), or
sums of Sidon sets, which is a severe restriction for the geometry of the Banach
space CΛ. For example, F. Lust–Piquard ([40]) proved that:

(0.2) The injective tensor product ℓ1⊗̂ε · · · ⊗̂εℓ1 has the Schur property (i.e.
weakly null sequences converge in norm to zero).

It follows easily that:

(0.3) If Λ = E1×· · ·×Ek, where the Ej ’s are Sidon sets, then CΛ has the Schur
property; in particular, CΛ does not contain c0, the space of sequences
going to zero at infinity.

Since these sets were essentially the only known examples of p-Sidon sets
(they are exactly 2N/(N + 1)-Sidon), one could believe that all p-Sidon sets
have this property. It should be mentionned that in [3], R. Blei constructed for
each p ∈]1, 2[, exactly p-Sidon sets, using fractional products, so of a different
type, but the corresponding space CΛ appears as an ℓ1-sum of finite dimensional
spaces, and so does have the Schur property (we thank R. Blei for this remark).

Because of this lack of examples, the comparison between two classes of
thin sets proved to be very difficult: whether a p-Sidon, or a set of uniform
convergence is a Λ(q)-set for some q > 1 is still an open problem. On the other
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hand, considerable progress concerning the Sidon sets or Λ(q)-sets has been
made: for example, G. Pisier ([47], Th. 6.2) proved that the converse of (0.1)
is true, and J. Bourgain ([12]) proved that for each q > 2 there exist “exactly”
Λ(q)-sets, i.e. sets which are Λ(q), but Λ(q′) for no q′ > q. Both authors used
random methods, and more specifically, J. Bourgain popularized the “method of
selectors” to produce several thin sets Λ with unusual properties, such as being
“uniformly distributed”, which implies, by a result of F. Lust–Piquard ([42]),
that CΛ contains c0 and therefore is not a Rosenthal set (i.e. there are bounded
measurable functions with spectrum in Λ wich are not almost everywhere equal
to a continuous function), and which also implies that Λ is dense in the Bohr
group (see [6], Theorem 1). This allowed the first named author to see that
there are sets of integers which are Λ(q) for all q < +∞ but not Rosenthal ([37];
see also [43]).

The aim of this paper is the construction of random sets Λ of integers which
have thinness properties, but wich are not Rosenthal sets (i.e. CΛ is not the
whole L∞

Λ ), actually such that CΛ contains c0, and are dense in the Bohr group.
In view of (0.3), these sets will necessarily be very exotic compared to the
previously known examples. This shows that replacing absolute convergence of
the Fourier series by uniform convergence (sets of uniform convergence) or by
ℓp convergence for p > 1 (p-Sidon sets) gives sets which are very far from Sidon
sets. This constrasts with Pisier’s result saying that Λ is necessarily a Sidon
set whenever f̂ ∈ ℓ1,∞ for every f ∈ CΛ (from [48], Théorème 2.3 (vi), and the
top of page 688). On the other hand, though non-Sidon Rosenthal sets do exist
([53]), it follows from Bourgain-Milman’s cotype theorem ([13]) that, for every
non-Sidon set Λ, CΛ does contain ℓn∞ uniformly, so that the presence of c0 inside
CΛ for non-Sidon Λ may appear not so surprising. Although it is not known
whether Sidon sets may be dense in the Bohr group, we obtain in this paper, as
mentioned above, sets which are dense in the Bohr group, and are of uniform
convergence and p-Sidon for every p > 1.

We construct essentially four types of sets. Each of them will be a non
Rosenthal set, but a set of uniform convergence, Λ(q) for all q < +∞, and with
moreover additional properties of p-Sidonicity.

The first one (Theorem 2.2) is a very lacunary set Λ with the nicest prop-
erties: it is p-Sidon for all p > 1. The second and third ones (Theorem 2.5 and
Theorem 2.6) are medium lacunary sets: for each p with 1 < p < 4/3, they are,
in Theorem 2.5, p-Rider (a weaker property than being p-Sidon, see the defini-
tion below), but not q-Rider for q < p, and are q-Sidon for every q > p/(2− p) ;
and in Theorem 2.6, they are q-Rider for every q > p, but not p-Rider, and they
are q-Sidon for every q > p/(2 − p). Finally, the fourth type (Theorem 2.7) is a
set Λ which is, in some sense as little lacunary as possible if we want its trace on
each interval [N, 2N [ to have a bounded Sidon constant. It leads to sets which
are 4/3-Rider, but not q-Rider for q < 4/3.

We construct these sets by using various choices of selectors, and adding
arithmetical, functional or probabilistic arguments. The treatment of the last
case requires a different probabilistic approach, taken from [8].
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It should be noted that in the two first cases the sets are uniformly dis-
tributed; in the fourth case , however, the sets Λ only have positive upper
density in uniformly distributed sets. Nevertheless, CΛ still contains c0, by a
result of F. Lust-Piquard ([42], Th. 5).

Acknowledgement. Part of this paper was made when the first named author
was a guest of the Departamento de Análisis Matemático de la Universidad de
Sevilla in April 1999, and when the third named author was a guest of the
Université d’Artois in Lens in june 1999.

1 Notation, definitions and preliminary results

We denote by T the compact abelian group of complex numbers of modulus
one, equipped with its normalized Haar measure m. C(T) denotes the space of
continuous complex functions defined on T, equipped with its sup norm ‖ ‖∞ and
identified as usual with the space of continuous 2π-periodic complex functions
defined on R. If Λ is a subset of the dual group Z, CΛ will denote the subspace
of C(T) consisting of functions whose spectrum lies in Λ:

f̂(n) ≡
∫

T

fe−n dm = 0 if n ∈ Z \ Λ,

where en(z) = zn, or equivalently, en(t) = eint.
CΛ is the uniform closure of the space PΛ of trigonometric polynomials with

spectrum in Λ, i.e. the uniform closure of the subspace PΛ generated by the
characters en, with n ∈ Λ.

For f ∈ C(T), 1 ≤ q < +∞, M and N positive integers, we shall denote the
Fourier sums of f by:

SM,N (f) =

N∑

−M

f̂(n)en

and the symmetric Fourier sums of f by:

SN (f) = SN,N(f) =

N∑

−N

f̂(n)en .

|A| denotes the cardinality of the finite set A.

A relation in Λ ⊆ Z
∗ ≡ Z \ {0} is a (+1,−1, 0)-valued sequence (θk)k∈Λ

such that
∑ |θk| < +∞ and

∑
θkk = 0. The set S = {k ; θk 6= 0} is called the

support of the the relation, and |S| =
∑ |θk| is called its length.

The relation (θ′k)k∈Λ is said to be longer than the relation (θk)k∈Λ if θk 6= 0
implies θk = θ′k.

The set Λ ⊆ Z∗ is quasi-independent if it contains no non-trivial relation
(i.e. with non-empty support). Typically, Λ = {1, 2, 4, . . . , 2n, . . . } is quasi-
independent. The quasi-independent sets are the prototype of Sidon sets, i.e.

4



of sets Λ for which: ‖f̂‖1 ≤ K‖f‖∞ for all f ∈ CΛ. The best constant K in
this inequality is called the Sidon constant of Λ and is denoted by S(Λ). We
will refer to [39] for standard notions on Sidon sets. It is known that quasi-
independent sets are not only Sidon sets but their Sidon constant is bounded
by an absolute constant: this follows from [54], Th. 2.4 and [49], Lemma 1.7.
Other proofs can be found in [48], lemme 3.2, and in [9], Prop. 1. We shall use
the fact that S(Λ) ≤ 8 if Λ is quasi-independent.

Let us recall now some classical definitions and results.

A set Λ ⊆ Z is said to be a Λ(q)-set (where q > 2) if there exists a positive
constant Cq such that ‖f‖q ≤ Cq‖f‖2 for every f ∈ PΛ.

The notion of a Λ(q)-set is, in some sense, local. That follows from the
Littlewood-Paley theory. The next proposition is essentially well-known, except
for the growth of the constant, for which we have found no reference. Accord-
ingly, we offer a short proof.

Proposition 1.1 Let Λ ⊆ [2,+∞[. Then:
(a) Let (Mn)n≥1 be a sequence of positive integers such that M1 ≤ 2 and

Mn+1/Mn ≥ α > 1. If Λ ∩ [Mn,Mn+1[, n ≥ 1, has a uniformly bounded Sidon
constant, then Λ is Λ(q) for all q ≥ 2; more precisely: ‖f‖q ≤ C(q, α)‖f‖2 for
every f ∈ PΛ.

(b) If Λ ∩ [2n, 2n+1[, n ≥ 1, has a uniformly bounded Sidon constant, Λ is
Λ(q) for every q ≥ 2 and, more precisely: ‖f‖q ≤ Cq2‖f‖2 for every f ∈ PΛ

and for some numerical constant C.

Proof. (a) Set

fk =
∑

Mk≤n<Mk+1

f̂(n)en and Sf =
( +∞∑

k=1

|fk|2
)1/2

.

Since Mk+1/Mk ≥ α > 1 and Λ ⊆ [M1,+∞[, we have ([62], Chap. XV, Th.
2.1):

‖f‖q ≤ C0(q, α)‖Sf‖q .

Now, using the 2-convexity of the Lq-norm for q ≥ 2, we obtain:

‖Sf‖q ≤
( +∞∑

k=1

‖fk‖2
q

)1/2

.

But fk ∈ PΛk
, where Λk = Λ ∩ [Mk,Mk+1[ has a uniformly bounded Sidon

constant. Therefore ‖fk‖q ≤ C1
√
q‖f‖2, where C1 is a numerical constant. The

result follows.
(b) We now make use of the classical square function

Sg =
( ∑

k∈Z

|gk|2
)1/2

,
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where

gk =
∑

2k≤n<2k+1

ĝ(n)en , if k ≥ 0 and gk =
∑

−2|k|+1<n≤−2|k|

ĝ(n)en if k < 0 .

For this classical square function, we have the following sharp inequality, due
to J. Bourgain ([11], Th. 1):

‖Sg‖p ≤ C0(p− 1)−3/2‖g‖p for 1 < p ≤ 2 ,

where C0 is a numerical constant. We deduce by duality that:

‖f‖q ≤ C0q
3/2‖Sf‖q for 2 ≤ q < +∞ .

In fact, by orthogonality (recall that f ∈ PΛ and that Λ ⊆ [2,+∞[) and the
Cauchy–Schwarz inequality, we have, for every g ∈ Lp with ‖g‖p = 1 (1/p +
1/q = 1):

| < f, g > | =
∣∣
+∞∑

k=1

< fk, gk >
∣∣ =

∣∣
∫

T

+∞∑

k=1

fk(−t)gk(t) dm(t)
∣∣

≤
∫

T

Sf(−t)Sg(t) dm(t)

≤ ‖Sf‖q‖Sg‖p ≤ C0(p− 1)−3/2‖Sf‖q

≤ C0q
3/2‖Sf‖q.

This means that here we are allowed to take C0(q, 2) = C0q
3/2 in part (a) of

the proof. The rest is unchanged, and we can also take C(q, 2) = C1
√
qC0 q

3/2 =
Cq2. �

A set Λ ⊆ Z is called a set of uniform convergence (in short a UC-set) if, for
any f ∈ CΛ, the symmetric Fourier sums SN (f) converge uniformly to f . Its
constant of uniform convergence U(Λ) is the smallest constant K such that, for
any f ∈ CΛ:

sup
N

‖SN(f)‖∞ ≤ K‖f‖∞.

The following variant turns out to be more tractable ([56]). Λ is called a set
of complete uniform convergence (in short a CUC-set) if the translates (Λ+a) are
uniformly UC for a ∈ Z, or equivalently, if the Fourier sums SM,N (f) converge
uniformly to f as M,N go to +∞, for every f ∈ CΛ.

The two notions turn out to be distinct ([20]), but clearly coincide if Λ ⊆ N,
which will always be the case in the sequel. The notion of CUC-set is also a
local one as the following proposition shows.

Proposition 1.2 ([57], Th. 3) Let Λ ⊆ N∗ and ΛN = Λ ∩ [N, 2N [.
(a) If U(ΛN ) is bounded by K for N = 1, 2, . . ., then Λ is a CUC-set.
(b) Let (Mn)n≥1 be a sequence of positive integers such that Mn+1/Mn ≥ 2.

Then, if Λ ∩ [Mn,Mn+1[ are quasi-independent for each n, or more generally if
they are Sidon sets with uniformly bounded Sidon constant, then Λ is a CUC-set.
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Remark. (b) is a useful criterion to produce sets that are CUC but not Sidon;
for instance, if Λ =

⋃+∞
n=1{2n + 2j ; j = 0, . . . , n − 1 }, then Λ ∩ [2n, 2n+1[ is

quasi-independent, whereas Λ∩[1, N ] has about (logN)2 elements, and therefore
cannot be Sidon (the mesh condition for Sidon sets, see Proposition 1.6 below,
is violated).

The random variables which we shall use will always be defined on some
probability space (Ω,A,P) which will play no explicit role, and the expectation
with respect to P will always be denoted by E:

E(X) =

∫

Ω

X(ω) dP(ω) .

Recall the (more or less) classical deviation inequality (see [32], § 6.3):

Lemma 1.3 Let X1, . . . , XN be independent centered complex random variables

such that |Xk| ≤ 1, k = 1, . . . , N . Let σ ≥
N∑

k=1

E|Xk|2. Then, one has, for every

a ≤ σ:
P(|X1 + · · · +XN | ≥ a) ≤ 4 exp(−a2/8σ) .

Let (rn)n be a Bernoulli sequence, i.e. a sequence of independent random
variables such that:

P(rn = 1) = P(rn = −1) = 1/2 .

For f ∈ P , the space of trigonometric polynomials, [[f ]] denotes the norm of
f in the Pisier’s space Ca.s.:

[[f ]] = E
∥∥

∑

n

rnf̂(n)en

∥∥
∞
.

See [25] and [47] for more information about this norm.

Definition 1.4 A set Λ ⊆ Z is called a p-Sidon set (1 ≤ p < 2) if there exists

a constant K such that ‖f̂‖p ≤ K‖f‖∞ for all f ∈ PΛ.

It is said to be a p-Rider set if there exists a constant K such that ‖f̂‖p ≤
K[[f ]] for all f ∈ PΛ.

p-Rider sets were implicitely introduced, with different definition, in [18]
(Th. 2.4), and in [23], p. 213, as class Tp (see also [47], Th. 6.3). They were
explicitely defined and studied in [51] and [52] under the name “p-Sidon presque
sûrs”. We used “almost surely p-Sidon set” in the first version of this paper, but,
following a suggestion of J.-P. Kahane, we now use the terminology “p-Rider”.

Clearly, every p-Sidon set is p-Rider. The converse is true for p = 1: this
is a remarkable result due to D. Rider ([50]), making clever use of Drury’s
convolution device (which proves that the union of two Sidon sets is Sidon [17]).
Whether this converse is still true for 1 < p < 2 is an open problem.
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Definition 1.5 We shall say that a finite set B ⊆ Λ is M -pseudo-complemented
in Λ if there exists a measure µ on T such that:

|µ̂| ≥ 1 on B ; µ̂ = 0 on Λ \B ; ‖µ‖ ≤M .

The following proposition gives some necessary, sufficient, or necessary and
sufficient conditions for a set Λ to be p-Sidon or p-Rider. Part (b) of this
proposition seems to be new.

Proposition 1.6 Let Λ ⊆ Z∗ and 1 ≤ p < 2. Set ε(p) = 2/p− 1. Then:
(a) Λ is a p-Rider set if and only if there exists a constant δ > 0 such that,

for every finite set A ⊆ Λ, there exists a quasi-independent subset B ⊆ A such
that |B| ≥ δ|A|ε(p).

(b) Let q0 > 1. If there exists a constant δ > 0 such that, for every finite set
A ⊆ Λ, there exists a quasi-independent subset B ⊆ A such that |B| ≥ δ|A|1/q0

and if B can moreover be taken M -pseudo-complemented in Λ, for some fixed
M , then Λ is a q-Sidon set for every q > q0.

(c) If Λ is a p-Rider set, we have the following mesh condition:

|Λ ∩ [1, N ]| ≤ C(logN)p/(2−p).

Proof. We refer to [51] for the proof of (a) and (c). To prove (b), let f ∈ PΛ,

fix t > 0, and set A = { |f̂ | > t }. Take B ⊆ A and µ as in Definition 1.4. Then

B is a Sidon set with Sidon constant ≤ 8, and since f ∗ µ =
∑

n∈B

f̂(n)µ̂(n)en,

‖f‖∞ ≥M−1
∥∥∥

∑

B

f̂(n)µ̂(n)en

∥∥∥
∞

≥ 1

8M

∑

B

|f̂(n)| |µ̂(n)|

≥ 1

8M

∑

B

|f̂(n)| ≥ t|B|
8M

≥ tδ|A|1/q0

8M
·

In other words, for some constant C > 0, one has:

t .| { |f̂ | > t } |1/q0 ≤ C‖f‖∞ , for every t > 0 ,

which means that the Lorentz norm of f̂ in the Lorentz space ℓq0,∞ is dominated
by ‖f‖∞.

Now, ℓq0,∞ is continuously injected in ℓq for q > q0 (see for instance [38], II
p. 143), and this gives the desired result. �

We denote, as usual, by c0 the classical space of sequences x = (xn)n≥0

tending to zero at infinity, equipped with the norm ‖x‖ = supn |xn|. We say, in
the usual familiar way, that a Banach space X “contains c0” if X has a closed
subspace isomorphic to c0. Our notation for Banach spaces is classical, as can
be found in [16], [38] or [59] for instance.

A subset Λ of Z is said to be a Rosenthal set if every bounded measurable
function on T with spectrum in Λ is almost everywhere equal to a continuous
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function (in short L∞
Λ = CΛ). Λ is not Rosenthal if and only if L∞

Λ is not
separable, so such a set can be thought as being a big set.

Every Sidon set is clearly Rosenthal, but H.P. Rosenthal gave examples of
non-Sidon sets which are Rosenthal ([53]). We shall make use of the following
well known negative criterion (see [41], § 3), which follows from the classical
theorem of C. Bessaga and A. Pe lczyński ([38], I.2.e.8), saying that a dual space
which contains c0 has to contain also ℓ∞.

Proposition 1.7 If CΛ contains c0, then Λ is not a Rosenthal set.

Definition 1.8 Let Λ ⊆ N∗ ≡ N \ {0}, and set

ΛN = Λ ∩ [1, N ] and AN (t) =
1

|ΛN |
∑

n∈ΛN

en(t) .

We say that Λ is:
- ergodic if (AN (t))N≥1 converges to a limit lΛ(t) ∈ C for each t ∈ T.
- strongly ergodic if it is ergodic and moreover the limit function lΛ defines

an element of c0(T): for every ε > 0 the set {t ∈ T ; |lΛ(t)| > ε } is finite.
- uniformly distributed if it is (strongly) ergodic and, moreover, lΛ(t) = 0

for t 6= 0 mod. 2π.

The reason for this terminology is that the ergodic sets are those for which
an ergodic theorem holds: (1/|ΛN |) ∑

n∈ΛN
T n converges in the strong operator

topology for every contraction T of a Hilbert space. Typically, the set of dth

perfect powers, or the set of prime numbers are strongly ergodic (according
to the result of Vinogradov for t irrational mod. 2π, and to the Dirichlet’s
arithmetic progression theorem for t rational mod. 2π). The third name comes
from H. Weyl’s classical criterion for the equidistribution of a real sequence mod.
2π.

The relationship between these notions comes from:

Theorem 1.9 (F. Lust-Piquard [42]) Let Λ ⊆ [1,+∞[ be a set of positive
integers. Then:

(a) If Λ is strongly ergodic, CΛ contains c0.
(b) More generally, if Λ is strongly ergodic and D ⊆ Λ has a positive upper

density with respect to Λ, then CD contains c0 as well.

Here “positive upper density” means that:

lim
N→+∞

|D ∩ [1, N ]|
|Λ ∩ [1, N ]| > 0 .

Part (b) will be useful to us in the last theorem of Section 2.
See [42] for the proof of this theorem. The underlying idea for (a) is that

if AN (t) → lΛ(t) for every t ∈ T, lΛ defines an element of the biorthogonal
C⊥⊥
Λ , and the condition lΛ ∈ c0(T) implies that it is the sum of a weakly un-

conditionally Cauchy series of continuous functions. By using a perturbation
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argument due to A. Pe lczyński (see [55], lemma 15.7, p. 446) and the classical
Bessaga-Pe lczyński theorem, one obtains that CΛ contains c0.

This theorem allowed its author to prove that CΛ contains c0 when Λ =
{1, 2d, 3d, . . .} is the set of the dth perfect powers, and when Λ = {2, 3, 5, 7, . . .}
is the set of the prime numbers. On the other hand, K. I. Oskolkov ([44]; see
also [1]) showed that the set of the dth powers is not a UC-set, and J. Fournier
and L. Pigno ([21], Th. 4) proved that the set of prime numbers is not a UC-set
either. This could be taken as an indication that containing c0 is an obstruction
to being UC. As we shall see in the next section, this is far from being the case:
there do exist sets Λ which are UC and for which CΛ contains c0.

The last ingredient we require is a random procedure to produce ergodic
sets.

Let (εk)k≥1 be a sequence of independent 0 − 1 valued random variables,
called “selectors” according to the terminology coined by J. Bourgain. To those
selectors is associated a random set Λ of positive integers

Λ = Λ(ω) = {k ≥ 1 ; εk(ω) = 1 } .

Theorem 1.10 (J. Bourgain [10], Prop. 8.2)Let ε1, . . . , εN , . . . be selectors
of respective expectations δ1, . . . , δN , . . . and assume that σN/ logN → +∞,
where σN = δ1 + · · · + δN (which is in particular the case when kδk → +∞),
and that (δn)n decreases. Then the set Λ = Λ(ω) is almost surely uniformly
distributed. In particular, it is almost surely strongly ergodic.

2 Main results

In this section, we will always consider selectors εn, n ≥ 1, with mean
δn = αn/n, with (αn)n tending to infinity and (δn)n decreasing.

Moreover, except in the last theorem of this section, we will assume that
(αn)n is increasing.

If Λ = Λ(ω) = {n ≥ 1 ; εn(ω) = 1} is the corresponding random set of inte-
gers, Λ is almost surely uniformly distributed by Bourgain’s theorem. Moreover,
it also has the nice almost sure property of being asymptotically independent;
more precisely, there exists an increasing sequence (Mn)n of positive integers
such that Λ∩[Mn,+∞[ is both large and without relations of length ≤ n. A sub-
set B of Λ∩ [Mn,+∞[ with n elements is then automatically quasi-independent,
and this allows us to use Propositions 1.1, 1.2, 1.6 to show that Λ has good
additional properties: UC, p-Sidon, etc... . To obtain this asymptotic quasi-
independence, the following half-combinatorial, half-probabilistic lemma plays
a crucial role.

Recall that σn = δ1 + · · · + δn .

Lemma 2.1 Let s ≥ 2 and M be integers. Set

Ωs(M) = {ω ∈ Ω ; Λ(ω) ∩ [M,+∞[ contains at least a relation of length s } .

10



Then:

P
(
Ωs(M)

)
≤ s 2s−2

(s− 2)!

∑

j>M

δ2jσ
s−2
j ≤ (4e)s

ss

∑

j>M

δ2jσ
s−2
j .

The important fact in this lemma is the presence of the exponent 2 in the
factor δ2j and of the factorial in the denominator.

Proof. We thank the referee for suggesting the following proof.
We have Ωs(M) =

⋃
l≥M+s−1 ∆l, where ∆l = ∆(l,M, s) is defined by:

∆l = {ω ; Λ(ω) ∩ [M,+∞[

contains at least a relation of length s, with largest term l }.

In other words, ω ∈ ∆l if and only if Λ(ω) ∩ [M,+∞[ has at least a relation of
length s which contains l and which is contained in {M, . . . , l}.

We clearly have:

∆l ⊆
⋃

(i1,...,is−1)

∆(l, i1, . . . , is−1),

where

∆(l, i1, . . . , is−1) = {ω ; εi1(ω) = · · · = εis−1
(ω) = εl(ω) = 1},

and where (i1, . . . , is−1) runs over the (s− 1)-tuples of integers such that:
(∗) M ≤ i1 < · · · < is−1 < l,
(∗∗) θ1i1 + θ2i2 + · · · + θs−1is−1 + θsl = 0, θ1, . . . , θs ∈ {−1,+1}.
Observe that δis−1

≤ (s−1)δl for such (s−1)-tuples. In fact, it follows from
(∗∗) that l ≤ i1 + · · · + is−1 ≤ (s− 1)is−1, so

δis−1
=
αis−1

is−1
≤ αl

is−1
=
αl

l

l

is−1
≤ (s− 1)δl.

Observe also that, when i1, . . . , is−2 are fixed, is−1 = ±l ± is−2 ± · · · ± i1
can take at most 2s−1 values, so that

P(∆l) ≤
∑

P
(
∆(l, i1, . . . , is−1)

)
=

∑
δi1 . . . δis−1

δl

≤ (s− 1)2s−1δ2l
∑

M≤i1<···<is−2≤l−1

δi1 . . . δis−2

≤ (s− 1)2s−1δ2l
(δM + · · · + δl−1)s−2

(s− 2)!

by the multinomial formula.
Therefore, noting that s ≥ 2, we have:

P
(
Ωs(M)

)
≤

∑

l≥M+s−1

(s− 1)2s−1δ2l
σ2

l−1

(s− 2)!
≤

∑

j>M

(s− 1)2s−1

(s− 2)!
δ2jσ

s−2
j . �
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The following theorem is the main result of the paper. It states that subsets
of integers can, in several ways, be very close to Sidon sets, but in the same
time be rather large.

Theorem 2.2 There exist sets Λ of integers which are:
(1) p-Sidon for all p > 1, Λ(q) for all q < +∞, and CUC, but which are also
(2) uniformly distributed; in particular, they are dense in the Bohr group,

and CΛ contains c0, so Λ is not a Rosenthal set.

Proof. We use selectors εk of mean

δk = c
log log k

k
(k ≥ 3),

where c is a constant to be specified latter. Since this constant plays no role in
the beginning of the proof, for convenience, we first assume that c = 1.

The last assertion follows at once from Bourgain’s and Lust-Piquard’s the-
orems. The rest of the proof depends on the following lemma, where we set
Λn = Λ ∩ [1, n] and Λ′

n = Λ ∩ [Mn,Mn+1[.

Lemma 2.3 If Mn = nn, one has the following properties, where C0 denotes a
numerical constant:

(1)
∑

n≥3 P
(
Ωn(Mn)

)
< +∞.

(2) Almost surely |ΛMn
| ≤ C0 n(logn)2 for n large enough.

(3) Almost surely |Λ′
n| ≤ C0(log n)2 for n large enough.

Proof of Lemma 2.3. Note first that

σn =
∑

3≤k≤n

log log k

k
≤ (log logn)

∑

3≤k≤n

1

k
≤ (log logn)

∫ n

1

dt

t
= logn log logn.

Now, take n ≥ 64, and use Lemma 2.1 to obtain (setting C = 4e):

P
(
Ωn(Mn)

)
≤ Cn

nn

∑

j>Mn

( log log j

j

)2

(log j log log j)n−2

≤ Cn

nn

∑

j>Mn

(log j log log j)n

j2
·

But, for fixed n, the function

u

v
=

(log x . log log x)n

x2

decreases on [Mn,+∞[. Indeed, we have to check that u′(x)v(x) ≤ u(x)v′(x)
on this interval, i.e. that

nx(1 + log log x)(log x log log x)n−1 ≤ 2x(log x log log x)n

12



or, equivalently, that

n(1 + log log x) ≤ 2 logx log log x .

Now, if x ≥ nn, we see that

n(1 + log log x) ≤ 2n log log x ≤ 2n logn log log x ≤ 2 log x log log x .

Therefore,

P
(
Ωn(Mn)

)
≤ Cn

nn

∫ +∞

Mn

(log t log log t)n

t2
dt .

Setting

fn(t) =
(log t log log t)n

t2
and In =

∫ +∞

Mn

fn(t) dt,

we have, by summation by parts:

In =
(logMn log logMn)n

Mn
+

∫ +∞

Mn

nfn(t)
( 1

log t
+

1

log t log log t

)
dt .

Since the function in the integrand is less than

2n

log t
fn(t) ≤ 2n

n logn
fn(t) ≤ 1

2
fn(t)

(recall that n ≥ 64), this gives:

In ≤ (logMn log logMn)n

Mn
+

1

2
In ,

so:

P
(
Ωn(Mn)

)
≤ Cn

nn
In ≤ 2

Cn

nn

(logMn log logMn)n

Mn

≤ 2
Cn

nn

(n logn.2 logn)n

Mn
= 2

(2C)n(logn)2n

nn
,

which proves (1).
To prove (2), first note that

σn ≥
∑

16≤k≤n

1

k
≥ 1

2
logn for n ≥ 256.

Now, using Lemma 1.3 with Xk = εk − δk, we obtain:

P
(∣∣ |Λn| − σn

∣∣ ≥ σn

2

)
= P

(∣∣∣
∑

3≤k≤n

Xk

∣∣∣ ≥ σn

2

)

≤ 4 exp
(
− σn

32

)
≤ 4 exp

(
− logn

64

)
.
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In particular, since Mn = nn,

P

(∣∣ |ΛMn
| − σMn

∣∣ ≥ σMn

2

)
≤ 4 exp

(
− n logn

64

)
,

and the Borel-Cantelli lemma shows that, almost surely,

∣∣ |ΛMn
| − σMn

∣∣ < σMn
/2

for n large enough (depending on ω). Thus:

|ΛMn
| ≤ 2σMn

≤ 2 logMn log logMn ≤ C0 n(logn)2 ,

for some numerical constant C0, and this gives (2).
The proof of (3) goes the same way. Set:

σ′
n =

∑

Mn≤k<Mn+1

log log k

k

and observe that (here, and in the remainder of the paper, the sign ∼ between
two functions will mean that these two functions are equivalent up to a constant
factor):

σ′
n ∼ log n

∑

Mn≤k<Mn+1

1

k
∼ logn log

Mn+1

Mn
∼ (logn)2 ,

so that:
C−1

0 (logn)2 ≤ σ′
n ≤ C0(log n)2

for some numerical constant C0.
Then, using again Lemma 1.3, we get:

P
(∣∣ |Λ′

n| − σ′
n

∣∣ ≥ σ′
n/2

)
≤ 4 exp

(
− σ′

n

32

)
≤ 4 exp

(
− (logn)2

32C0

)
;

so the Borel-Cantelli lemma shows that, almost surely,

|Λ′
n| ≤ 2σ′

n ≤ 2C0(logn)2

for n large enough, which gives (3), provided we enlarge C0, and completes the
proof of Lemma 2.3. �

We now conclude the proof of Theorem 2.2.
We first choose the constant c in order that, not only

∑
n≥3 P

(
Ωn(Mn)

)
<

+∞, but
∑

n≥3 P
(
Ωn(Mn)

)
< 1. So, using Lemma 2.3, we can find Ω0 ⊆ Ω

such that P(Ω0) > 0 and with the property:

If ω ∈ Ω0, then ω 6∈
⋃

n≥3

Ωn(Mn). There exists n0 = n0(ω) such that

|Λ2Mn
| ≤ C0 n(logn)2 and |Λ′

n| ≤ C0(log n)2 ≤ n for n > n0.

(2.1)
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Indeed, an inspection of the proof of Lemma 2.3 shows that we also have, almost
surely, |Λ2Mn

| ≤ 2σ2Mn
≤ C0 n(logn)2 for n large enough, and this gives (2.1).

We have the following consequences, where ω ∈ Ω0, and Λ = Λ(ω):

Λ ∩ [Mn,+∞[ contains no relation of length ≤ n. (2.2)

For, if Λ∩ [Mn,+∞[ were to contain a relation R of support S with |S| = s ≤ n,
then necessarily s ≥ 3, S ⊆ Λ∩[Ms,+∞[ and ω ∈ Ωs(Ms), which is not the case
by (2.1). Now, (2.1) and (2.2) imply that, for n > n0, Λ′

n is quasi-independent,
and so is a Sidon set with bounded constant. So, we get that Λ is CUC and
Λ(q) for all q < +∞ using Propositions 1.1 and 1.2, provided we notice that:

Mn+1

Mn
=

(n+ 1)n+1

nn
≥ n+ 1 ≥ 2.

To end the proof, we first show that Λ is p-Rider, for every p > 1, and then,
using Proposition 1.6 (c), prove that it is q-Sidon for every q > 1.

So, fix p ∈] 1, 2 [, set ε = 2/p−1 ∈] 0, 1 [, and take ω ∈ Ω0 and n1 = n1(ε, ω) ≥
2n0(ω) such that C0 n(logn)2 ≤ n1/ε/2 and n1/ε/2 ≥ n for n ≥ n1.

Let A ⊆ Λ be a finite subset, with |A|ε > n1. Set n = [|A|ε], where [ ] stands
for integer part, so that n ≥ n1 and |A| ≥ n1/ε. Observe that:

∣∣A ∩ [Mn,+∞[
∣∣ ≥ |A| − |A ∩ [1,Mn]| ≥ |A| − |ΛMn

|
≥ n1/ε − C0 n(log n)2 ≥ n1/ε/2 ≥ n ,

and select B ⊆ A ∩ [Mn,+∞[ with |B| = n. It follows from (2.2) that B is
quasi-independent, and |B| = n ≥ 1

2 |A|ε.
If now A is a subset of Λ with 1 ≤ |A| ≤ n1, simply take for B a singleton

from A. Then B is quasi-independent, and |B| = 1 ≥ n−1
1 |A|ε.

The criterion of Proposition 1.6 (a) is verified with δ = n−1
1 . Therefore Λ is

p-Rider.
We shall verify that we are in position to apply part (b) of Proposition 1.6.
Take p ∈] 1, 2 [ and 1/p < ε < 1. Take ω ∈ Ω0 and n1 = n1(ε, ω) ≥ 2n0(ω)

such that C0 n(logn)2 ≤ n1/ε/2 and n1/ε/2 ≥ n for n ≥ n1.
Let A ⊆ Λ be a finite subset with |A|ε > n1. Set n = [|A|ε], where [ ] stands

for integer part, so that n ≥ n1 and |A| ≥ n1/ε. Observe that:

|A ∩ [2Mn,+∞[| ≥ |A| − |A ∩ [1, 2Mn]| ≥ |A| − |Λ2Mn
|

≥ n1/ε − C0 n(logn)2 ≥ n1/ε/2 ≥ n

in view of (2.1). We can thus select B ⊆ A ∩ [2Mn,+∞[ with |B| = n− 1 and
have:

If k ∈ Λ ∩ [Mn,+∞[, then B ∪ {k} is quasi-independent.

Indeed, B ∪ {k} is a set of cardinality less than n contained in Λ ∩ [Mn,+∞[,
and is automatically quasi-independent, from (2.2).

We show now that B is 8-pseudo-complemented in Λ.
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Put ν = δ0 − VMn
, where δ0 is the Dirac point mass at 0, and VMn

the
de la Vallée-Poussin kernel of order Mn. Consider the Riesz product R =∏
k∈B

(1 + Re ek), and set µ = 2ν ∗R. We claim that:

‖µ‖ ≤ 8 ; µ̂ ≥ 1 on B ; µ̂ = 0 on Λ \B.

Indeed, ‖ν‖ ≤ 4 and B is quasi-independent, so the Riesz product R verifies

‖R‖ = R̂(0) = 1. Therefore ‖µ‖ ≤ 8.

Take l ∈ B. Then l > 2Mn and ν̂(l) = 1. As R̂(l) ≥ 1/2, we have µ̂(l) ≥ 1.
If A ⊆ Λ and |A|ε ≤ n1, any singleton B of A is quasi-independent, 1-

complemented in Λ, and |B| ≥ n−1
1 |A|ε.

We have thus verified the hypothesis of part (b) of Proposition 1.6, and so Λ
is q-Sidon for any q > 1/ε. In particular, it is p-Sidon, and this ends the proof
of Theorem 2.2. �

Remark 1. The proof shows that we can actually extract from A, for every
α > 0, a quasi-independent set B such that |B| ≥ δ|A|/(log |A|)2+α. Moreover,
a slight modification leads to sets even closer to Sidon sets.

Proposition 2.4 Let α > 1 and ϕα be the Orlicz function x 7→ x
(

log(1+x)
)α

.

Then, there exists a set Λ as in Theorem 2.2, and moreover such that f̂ ∈ ℓϕα,∞

for every f ∈ CΛ.

Recall that ℓϕα,∞ is the weak Orlicz-Lorentz space of sequences (an)n such
that sup

n
ϕ−1

α (n)a∗n < +∞, where (a∗n)n is the non-increasing rearrangement of

(|an|)n. Therefore, another way to phrase the proposition is, setting an = f̂(n):

a∗n ≤ Cα‖f‖∞(logn)α/n for every f ∈ CΛ.

The proof just consists in changing Mn. We take Mn =
[
en(log log n)2

]
, where [ ]

stands for the integer part. We still have
∑
n

P
(
Ωn(Mn)

)
< +∞, since

P
(
Ωn(Mn)

)
≤ 2Cn

nn

(logMn log logMn)n

Mn
≤ exp

(
− n (log log n)2/2

)

for n large enough. Arguing as previously, we get for every finite subset A of Λ, a
quasi-independent subset B of A such that |B| ≥ δ|A|/(log |A|)α, and such that
CB is uniformly pseudo-complemented in CA. As in the proof of Proposition 1.6,
we obtain

| {|f̂ | > t} | ≤ C ϕα

(‖f‖∞
t

)
,

which gives the result (arguing as in [34] for instance).

We cannot eliminate a logarithmic factor, and replace α > 1 by α > 0
because, due to Bourgain’s criterion, we have to assume that σn/ logn goes to
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infinity in order that CΛ contains c0. However, for each α > 0, there do exist
non-Sidon sets Λ for which f̂ ∈ ℓϕα

when f ∈ CΛ (as can be seen from [5], p.
69).

The set Λ is, in some sense, very close to be Sidon, whereas CΛ contains c0.
However, it cannot be too close without being Sidon because if f̂ ∈ ℓ1,∞, the
Lorentz space weak-ℓ1, for every f ∈ CΛ, then Λ is Sidon. In fact, this condition
implies an inequality of the type:

|{|f̂ | ≥ t}| ≤ C

t
‖f‖∞ (∗)

for every f ∈ CΛ. Let now A be a finite subset of Λ, and f =
∑

n∈A

en and

fω =
∑

n∈A

rn(ω)en, where rn, n ≥ 1 are the Rademacher functions. Then,

inequality ((∗)) applied with t = 1 gives ‖fω‖∞ ≥ (1/C)|A|. Integrating in ω
gives [[f ]] ≥ (1/C)|A|, from which follows, by a result of G. Pisier ([48], Théorème
2.3 (vi)), that Λ is a Sidon set.

Remark 2. If one takes selectors of mean δn such that nδn is bounded, the
corresponding random set Λ(ω) is almost surely a Sidon set. This is a well-known
result of Y. Katznelson and P. Malliavin ([28], or [27]), and Lemma 2.1 gives
another proof of this fact. It suffices to takeMn = An, whereA is a given integer,
large enough to have

∑+∞
n=1 P

(
Ωn(Mn)

)
< 1. Then, with positive probability

Λ(ω)∩ [Mn,+∞[ contains no relation of length ≤ n, whereas |Λ(ω)∩ [1,Mn]| ≤
Cn. Hence, for every finite subset A of Λ(ω), we can find a quasi-independent
subset B ⊆ A such that |B| ≥ δ|A|, for some fixed δ = δ(ω). It follows from
Pisier’s characterization ([48], Th. 2.3 (iv)) that, with positive probability, and
hence almost surely by Kolmogorov’s 0 − 1 law, Λ(ω) is a Sidon set.

As is now well-known, Sidon sets are characterized by various properties
(successively weaker) of the Banach space CΛ: Λ is a Sidon set iff CΛ is isomor-
phic to ℓ1 ([58]), iff CΛ has cotype 2 ([31], Th. 3.1, [46]), and iff CΛ has a finite
cotype ([13]). This later property can be expressed by saying that CΛ does not
contain ℓn∞ uniformly. So, deterministically, one has the dichotomy:

(a) either Λ is a Sidon set, and so CΛ is isomorphic to ℓ1;
(b) or CΛ contains ℓn∞ uniformly.
The probabilistic dichotomy is stronger: taking selectors of mean δ1, δ2, . . . ,

with (δn)n decreasing, one has:
(a) either almost surely Λ is a Sidon set (if nδn is bounded);
(b) or almost surely CΛ contains c0 (if nδn is not bounded), and Λ is even

uniformly distributed.

Y. Katznelson ([27]) already noticed such a “dichotomy”: he showed that
(under a different choice of selectors from ours) either almost surely Λ is a Sidon
set, or almost surely Λ is dense in the Bohr group. However, this is perhaps not
a true dichotomy since it is a well-known open problem whether there can exist
Sidon sets dense in the Bohr group (see [15], question 2, p. 14; it is stated for
the Bohr group of R, but also makes sense for the Bohr group of Z).
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The dichotomy stated here strengthens Katznelson’s result since every uni-
formly distributed set is dense in the Bohr group (see [6], Theorem 1); indeed,
saying that Λ = {λ1, λ2, . . .} is uniformly distributed means that the measures

µN = 1/N
+∞∑
n=1

δλn
(δλn

is there the Dirac measure at the point λn) converge

weak-star to the Haar measure µ of the Bohr group bZ; but these measures are
carried by Λ, so the closed support of µ is contained in the Bohr closure of Λ ;
since the Haar measure is continuous, we get that this closure is the whole Bohr
group.

Remark 3. The random sets Λ that we construct have an asymptotical quasi-
independence: Λ∩[Mn,+∞[ contains no relation of length ≤ n. This is reminis-
cent of the following result of J. Bourgain ([7]): if Λ is a Sidon set and n ∈ N∗,
there exists ln = l(Λ, n) such that Λ can be decomposed in ln sets Λ1, . . . ,Λln ,
each of which contains no relation of length ≤ n.

We now investigate what happens when we let p increase away from 1.We
get several different results, and p = 4/3 seems to play a special role.

We first state two very similar results.

Theorem 2.5 For every 1 < p < 4/3, there exists a set Λ of integers which is:
(1) uniformly distributed (so Λ is dense in the Bohr group, CΛ contains c0,

and Λ is not a Rosenthal set), and which is:
(2) Λ(q) for all q < +∞, a CUC-set, and moreover is:

(a) p-Rider, but not q-Rider for q < p
(b) q-Sidon for all q > p/(2 − p).

Theorem 2.6 Same as Theorem 2.5, except that, instead of (a), Λ is:
(a’) q-Rider for every q > p, but is not p-Rider.

Remark. After this paper was completed, P. Lefèvre and the third-named
author proved ([36]) that every p-Rider set with p < 4/3 is a q-Sidon set, for all
q > p/(2 − p). A weaker, unpublished, result, due to J. Bourgain, is quoted in
[15], p. 41. Hence condition (b) always follows from condition (a), and is not
specific to the construction. We do not know whether this gap between p and
p/(2− p) follows only from technical reasons. For p > 1, whether every p-Rider
set is actually p-Sidon is an open question.

In Theorem 2.5, we obtain sets which are p-Rider but not q-Rider for q < p.
We do not know if these sets are p-Sidon, so exactly p-Sidon, in the terminology
of R. Blei. He constructed such sets using fractional products ([3], [4]). We
may call the sets in Theorem 2.5 “exactly p-Rider sets”. The sets appearing
in Theorem 2.6 are of a different kind. We may call them “exactly p+-Rider
sets”. Such sets were also obtained in [3], Corol. 1.7 d), where they were called
“exactly non-p-Sidon”, and were called “asymptotic p-Sidon” in [5].

Proof. It is similar to that of Theorem 2.2, so we shall be very sketchy.
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Let α = 2(p− 1)/(2 − p) ∈] 0, 1 [.
For Theorem 2.5, we use selectors εk of mean

δk = c
(log k)α

k(log log k)α+1
for k ≥ 4.

As in Lemma 2.3, we have, with Mn = nn,
∑

n≥1 P
(
Ωn(Mn)

)
< +∞, and

almost surely C0n
α+1 ≤ |ΛMn

| ≤ C1 n
α+1 and |Λ′

n| ≤ C1 n
α for n large enough.

For Theorem 2.6, we increase the means δk slightly, replacing them by

δk = c
(log k)α log log k

k
· �

Remark. In order to prove our theorems, we used selectors with various means.
They are smaller in Theorem 2.2 than in Theorem 2.5, for instance. We remark
that selectors (εk)k of mean δk with δk ≤ δ′k may be achieved as the product
of two independent sequences of selectors (ε′k)k and (ε′′k)k of mean δ′k and δ′′k =
δk/δ

′
k. It follows that, for example, the sets in Theorem 2.2 may be constructed

inside the respective sets of Theorem 2.5.

In Theorem 2.5, the proof that Λ was CUC or Λ(q) was based on the fact
that |Λ′

n| ⊆ Λ ∩ [Mn,+∞[ is quasi-independent. For α ≥ 1 (i.e. p ≥ 4/3), we
no longer have |Λ′

n| ≤ n, and therefore, a priori, must give up these properties.
However, we can use another extraction procedure. This procedure was first
introduced by J. Bourgain ([8]); later, a clear statement was given in [52], § III.2.
Since this last reference is hardly available, we prefer to give a self-contained
proof.

The corresponding set Λ(ω) of integers that we shall obtain in this manner
satisfies |Λ(ω)∩ [2n, 2n+1[| ∼ n ∼ log 2n, which is the limiting condition of mesh
(on arithmetic progressions) for Sidon sets. This size is in some sense the largest
possible if we want to obtain a set Λ with blocks having a uniformly bounded
Sidon constant.

Theorem 2.7 There exists a set Λ of integers which is uniformly distributed
and contains a subset E ⊆ N∗ which is:

(1) 4/3-Rider, and not q-Rider for q < 4/3; a CUC-set; a Λ(q)-set for all
q < +∞ (more precisely, for all q > 2, we have: ‖f‖q ≤ Cq2‖f‖2 for all
f ∈ PE, where C > 0 is a numerical constant), and nevertheless,

(2) has positive upper density in Λ, so, in particular, CE contains c0, and E
is not a Rosenthal set.

Let A be a finite subset of integers. For the proof, it will be convenient to
define:

ψA = sup
p≥2

‖eA‖p√
p
, where eA =

∑

k∈A

ek .

We need the following simple estimate of ψA.
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Lemma 2.8 Let I = [a+1, a+N ] be an interval of integers of length N , N ≥ 3.
Then:

ψI ≤ N√
2 logN

·

Proof. For p ≥ 2, |eI |p ≤ Np−2|eI |2, so
∫
|eI |p dm ≤ Np−2

∫
|eI |2 dm = Np−1

and ‖eI‖p/
√
p ≤ N1−1/p/

√
p. Optimizing gives p = 2 logN (≥ 2), and the

lemma. �

This estimate is essentially optimal. Indeed, it is well-known that ψI is
uniformly equivalent to θ = ‖eI‖Ψ (‖ ‖Ψ being the norm associated to the

Orlicz function Ψ(x) = ex2 − 1). But, for some constant γ, |eI(t)| ≥ γN for t in
an interval J of length ≥ γN−1 around 0, so one has:

2 ≥
∫

J

exp
( |eI |2
θ2

)
dm ≥ γN−1 exp

(γ2N2

θ2

)
,

whence θ ≥ γ−1N/
√

log 2γ−1N .

We now use selectors εk of mean δk = c n/2n for 2n ≤ k < 2n+1, where c > 0
is a given constant.

Set
In = [2n, 2n+1[, n ≥ 2 ; δk = c

n

2n
if k ∈ In .

Note that (δk)k decreases, and δk is of the form αk/k, where (αk)k goes to
+∞.

If Λ = Λ(ω) is the corresponding set of integers, it will be convenient to set:

Λn = Λ ∩ In ; σn = E|Λn| =
∑

k∈In

δk = cn .

For this proof, the value of ψIn
is somewhat large, and requires c be suffi-

ciently small, say c ≤ 1/576. We prefer to follow another route, which could be
useful in other contexts, by choosing also a random set in In for which the ψ
constant is small enough. We make the two random choices at the same time.
Namely, we consider (ε′n)n≥1, a second sequence of selectors, independent of
(εn)n≥1, with fixed mean τ , and set Λ′

n(ω) = {k ∈ Λn(ω) ; ε′k(ω) = 1}. In short:

Λ′
n = {k ∈ Λn ; ε′k = 1} ; Λ′ =

+∞⋃

n=1

Λ′
n .

The following lemma, which is a slight modification of Bourgain’s construc-
tion in [8], is really the heart of the proof.

Lemma 2.9 Almost surely, for n large enough, one has:
(1) (c/2)n ≤ |Λn| ≤ (2c)n and (cτ/2)n ≤ |Λ′

n| ≤ (2cτ)n
(2) Λ′

n contains at most relations of length ≤ ln, where ln = [144 c2τ2n].
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Proof of Lemma 2.9. We have already seen that:

P

(∣∣ |Λn| − σn

∣∣ ≥ σn

2

)
≤ exp

(
− σn

32

)
= exp

(
− c n

32

)
,

so, by the Borel-Cantelli lemma, |Λn| is almost surely between (c/2)n and (2c)n
for n large enough; and this proves the first half of (1). The second half holds
for the same reason, since Λ′

n corresponds to selectors εkε
′
k with mean (cτ)n/2n

for k ∈ In.
The proof of (2) is more elaborate.
Fix n, and consider the random trigonometric polynomial:

Fω =

|In|∑

j=ln+1

∑

R⊆In
|R|=j

∏

k∈R

εk(ω)ε′k(ω)
(
ek + e−k

)
.

Set:

Nn(ω) =

∫

T

Fω(t) dm(t) .

Expanding Fω , we see that:

Fω(t) =

|In|∑

j=ln+1

∑

R⊆In
|R|=j

∑

θk∈{−1,+1}R

∏

k∈R

εk(ω)ε′k(ω)eθk

k (t)

=

|In|∑

j=ln+1

∑

R⊆In
|R|=j

∑

θk∈{−1,+1}R

eit
(

P

k∈R θkk
)
.

The contribution to Nn(ω) of an exponential of this sum is 0 if
∑

k∈R

θkk 6= 0,

and is 1 if
∑

k∈R

θkk = 0. Therefore, Nn(ω) is exactly the number of relations of

length > ln in Λ′
n.

We claim that Nn(ω) is almost surely zero for n large enough. To that
effect, we majorize the expectation J of Nn(ω), using Fubini’s theorem. Indeed,
J =

∫
T
H(t) dm(t), where:

H(t) =

∫

Ω

Fω(t) dP(ω) =

|In|∑

j=ln+1

∑

R⊆In
|R|=j

δj
∏

k∈R

(ek + e−k) .

and δ = cτ n/2n. Hence:

J =

|In|∑

j=ln+1

∑

R⊆In
|R|=j

δj

∫

T

∏

k∈R

(
(ek(t) + e−k(t)

)
dm(t) .
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At this stage, it is useful to observe that:

∑

R⊆In
|R|=j

∫

T

∏

k∈R

(
ek(t) + e−k(t)

)
dm(t)

≤ 1

j!

∫

T

( ∑

k∈In

(
(ek(t) + e−k(t)

))j

dm(t) .

(3)

Indeed, when we expand

( ∑

k∈In

(
(ek(t) + e−k(t)

))j

,

each term
∏

k∈R

(
ek(t) + e−k(t)

)
appears j! times, whereas the other terms on

the right hand side of (3) are positive. It now follows from (3) that:

J ≤
|In|∑

j=ln+1

δj

j!

∫

T

( ∑

k∈In

(
(ek(t) + e−k(t)

))j

dm(t)

≤
|In|∑

j=ln+1

δj

j!
2j

∥∥∥
∑

k∈In

ek

∥∥∥
j

j
≤

|In|∑

j=ln+1

2jδj

j!
(ψIn

√
j)j .

Since j! ≥ (j/e)j ≥ (j/3)j, this gives

J ≤
+∞∑

j=ln+1

(6δψIn√
j

)j

≤
+∞∑

j=ln+1

( 6δψIn√
ln + 1

)j

.

Therefore,

J ≤ 2−ln if
6δψIn√
ln + 1

≤ 1

2
,

i.e. if ln + 1 ≥ 144(δψIn
)2. But, it follows from Lemma 2.8 that:

ψIn
≤ 2n

√
(2 log 2)n

≤ 2n

√
n
·

Therefore

144(δψIn
)2 ≤ 144

(
cτ

n

2n
· 2n

√
n

)2

= 144 c2τ2n,

and the choice of ln just fits to obtain J ≤ 2−ln . Of course, we have assumed n
large enough to have ln ≥ 1 in that proof.

Finally, Markov’s inequality implies:

∑

n≥2

P(Nn ≥ 1) ≤
∑

n≥2

ENn ≤
∑

n≥2

2−ln < +∞ ,
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and by the Borel-Cantelli lemma, the integer Nn is almost surely zero for n
large enough, and that ends the proof of Lemma 2.9. �

Now, using Bourgain’s Theorem 1.10 and Lemma 2.9, one can find Ω0 ⊆ Ω
with P(Ω0) = 1 such that for ω ∈ Ω0, there exists n0 = n0(ω) such that
Λ = Λ(ω) and Λ′ = Λ′(ω) satisfy:

(4) Λ and Λ′ are uniformly distributed

(5) (c/2)n ≤ |Λn| ≤ (2c)n and (cτ/2)n ≤ |Λ′
n| ≤ (2cτ)n for n > n0

(6) Λ′
n contains at most relations of length less than ≤ ln = [144c2τ2n] for

n > n0.

Λ′
n is not quite quasi-independent, so we shall modify it slightly. We adjust

once and for all τ , depending on c, such that 144c2τ2 ≤ cτ/4 (e.g. taking
cτ = 1/576), so that ln ≤ cτ n/4 ≤ |Λ′

n|/2 for n > n0, in view of (5). Select
then in Λ′

n a relation R with support Sn of maximal cardinality. Then |Sn| ≤ ln
from (6), and En = Λ′

n \ Sn is quasi-independent. Moreover:

|En| = |Λ′
n| − |Sn| ≥ |Λ′

n| − ln ≥ |Λ′
n|/2

for n > n0. Hence, if we set E =
⋃

n>n0

En, we have En = E ∩ In, and, moreover:

(7) E has positive upper density in Λ

(note that Λ′ has upper density ≥ τ/4 in Λ by (5)),

(8) En is quasi-independent,

(9) |En| ≥ (cτ/4)n,

(10) If A ⊆ E is a finite subset, then A contains a quasi-independent subset B
with |B| ≥ (1/2) |A|1/2.

The last property is proved in the following way. Set Z = {n ; A ∩En 6= ∅}
and h = |Z|. We distinguish two cases.

Case 1: there exists n ∈ Z such that |A ∩ En| ≥ |A|1/2.
Then, just take B = A ∩ En to have a quasi-independent set B such that

|B| ≥ |A|1/2.

Case 2: |A ∩ En| < |A|1/2 for any n ∈ Z.
Then h ≥ |A|1/2. Write Z = {n1 < · · · < nh}, and pick an integer mj ∈

A ∩Enj
for each j = 1, . . . , h. Then B = {m1,m3, . . .} =: {µ1, µ2, . . .} is quasi-

independent because we have µj+1/µj ≥ 2. Moreover |B| ≥ h/2 ≥ (1/2) |A|1/2.

It is now easy to see that E has the required properties. Indeed, it follows
from (4), (7), and from F. Lust-Piquard’s Theorem 1.9 that E has a positive
upper density in Λ. That it is CUC follows from (8) and from Proposition 1.2.
That it is Λ(q) for all q < +∞ follows from (8) and from Proposition 1.1.
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The fact that E is 4/3-Rider follows from (a) in Proposition 1.6. Indeed, if
ε(p) = 2/p− 1, then ε(4/3) = 1/2.

Finally, let N be a large integer, and n such that 2n ≤ N < 2n+1. Then

|E ∩ [1, N ]| ≥ |En0+1| + · · · + |En−1| ≥
cτ

4

[
(n0 + 1) + · · · + (n− 1)

]

≥ d0n
2 ≥ d1(logN)2

where d0, d1 are positive constants. If now E is a p-Rider set, we have the mesh
condition |E ∩ [1, N ]| = O

(
(logN)p/(2−p)

)
. This requires 2 ≤ p/(2 − p), that is

p ≥ 4/3. And this ends the proof of Theorem 2.7. �

Remark. The third-named author proved the following ([52], Lema 2.4) (which
is actually implicitly already contained in [48], Lemme 7.2, Théorème 7.1, and
Théorème 2.3 (iv)):

(∗) For every finite subset A ⊆ Z, there exists a quasi-independent subset
B ⊆ A such that |B| ≥ δ(|A|/ψA)2, where δ > 0 is a numerical constant.

On the other hand, G. Pisier ([47], Lemme 5.2) proved:

E

∥∥∥
∑

k

akrkek

∥∥
Ψ
≤ C

( ∑

k

|ak|2
)1/2

(1)

where C is a numerical constant, (rk)k is the Rademacher sequence, and ‖ ‖Ψ

is the Orlicz space associated to Ψ(x) = ex2 − 1.
Taking our selectors εk with mean δk = c n/2n for k ∈ In, standard sym-

metrization and centering arguments give:

E

∥∥∥
∑

k∈In

εkek

∥∥∥
Ψ
≤ C

√
n . (2)

In other terms, we have, in view of Lemma 2.9:

E(ψΛn
) ≤ C

√
n ≤ C′|Λn|1/2. (3)

If we could prove a concentration inequality, variant of Lemma 1.3, then this
variant and the Borel-Cantelli lemma would imply from (3) that:

Almost surely ψΛn
≤ C′′|Λn|1/2 for n large enough. (4)

We could then combine (∗) and (4) directly to obtain the following alterna-
tive proof of Theorem 2.7. Select ω ∈ Ω such that Λ is strongly ergodic, with
|Λn| ≥ c n/2, and ψΛn

≤ C′′|Λn|1/2; take then a quasi-independent set En ⊆ Λn

of size

|En| ≥ δ

( |Λn|
ψΛn

)2

≥ δC′′−2|Λn| ≥ δ′n ;

the set E =
⋃
n
En then has the required properties.
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To end this section, we consider the case p > 4/3. We cannot keep the
property of uniform convergence (CUC), nor that of being q-Sidon stated in
Theorem 2.5. We do not know whether this is only due to the method. But
being p-Rider with p > 4/3 might be a rather weak condition (see [35] and [36]).

Theorem 2.10 For every 4/3 ≤ p < 2 there exists a set Λ of integers which is
p-Rider, but is not q-Rider for q < p and which is Λ(q) for every q < +∞, but
which is uniformly distributed (so in particular dense in the Bohr group, and CΛ

contains c0).

The proof is essentially the same as in Theorem 2.2, except that we take
selectors εk of mean

δk = c
(log k)α

k(log log k)α+1
for k ≥ 1,

where α = 2(p − 1)/(2 − p) ≥ 1, and replace Mn = nn by the smallest integer
≥ nβn, with β any number > α (for instance β = α + 1), which we call again
Mn. The estimate:

P
(
Ωn(Mn)

)
≤ 2

cn

nn

(logMn)n(α+1)

Mn

still holds, and now gives:

P
(
Ωn(Mn)

)
≤ C′ n (logn)n(α+1)

n(β−α)n
·

Then easy computations show that:
(∗) Almost surely |ΛMn

| ∼ (n logn)α+1 for n sufficiently large;
(∗∗) Almost surely |Λ′

n| ∼ nα(logn)α+1 for n sufficiently large.
Property (∗) guaranties that Λ(ω) will still be almost surely p-Rider, and (∗∗)
with the mesh condition implies that Λ is not q-Rider for q < p.

The Λ(q) property cannot be obtained by the Littlewood-Paley method, but
follows from [43], Theorem 4.7. �

3 Large thin sets in prescribed sets of integers

In this section, we start from a prescribed set Λ0 = {λ1 < λ2 < . . . < λN <
. . .} of positive integers, and randomly construct a thin set Λ inside Λ0 in the
following way. We still have our selectors ε1, . . . , εN , . . . of respective means
δ1, . . . , δN , . . .. This time, however, we set

Λ = Λ(ω) = {λj ∈ Λ0 ; εj(ω) = 1},

i.e. we select randomly some of the λj ’s, and ignore the other integers. Such
constructions have been made previously by S. Neuwirth ([43]).
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We always assume that Λ0 is ergodic, namely that

AΛ0,N (t) = N−1
(
eiλ1t + · · · + eiλN t

)
−→

N→+∞
l(t) , ∀t ∈ T.

In this context, we have the following theorem, which extends Bourgain’s
Theorem 1.10.

Theorem 3.1 ([43], Th. 5.4) Let Λ0 be an ergodic (resp. strongly ergodic,
resp. uniformly distributed) set of positive integers, and let ε1, . . . , εN , . . . be
selectors with respective expectation δ1, . . . , δN , . . . with (δn)n≥1 decreasing. As-
sume that σN/ logλN −→

N→+∞
+∞, where σN = δ1 + · · · + δN . Then, almost

surely, the set Λ is ergodic (resp. strongly ergodic, resp. uniformly distributed).
More precisely, if AΛ0,N (t) −→

N→+∞
l(t), we have, almost surely, with ΛN =

Λ ∩ {λ1, . . . , λN},

AN (t) =
1

|ΛN |
∑

n∈ΛN

en(t) −→
N→+∞

l(t) , ∀t ∈ T.

We sketch the proof. First, we require

Lemma 3.2 Let ε1, . . . , εN be selectors of respective expectations δ1, . . . , δN .
Setting σN = δ1 + · · · + δN , one has the following inequality:

P
(∥∥ N

P

k=1

(εk − δk)eλk

∥∥
∞
> 15

√
σN logλN

)
≤ 8/N2 ,

provided that σN ≥ 25 logλN .

Proof. Set Q =
N∑

k=1

(εk − δk)eλk
. For fixed t ∈ R, one has Q(t) =

N∑
k=1

Xk, where

Xk = eλk
(t)(εk − δk). The Xk’s are independent, bounded by 1, and centered

complex random variables; so, letting tN = 5
√
σN logλN , and using Lemma 1.3,

we get

P(‖Q‖∞ > 3tN) ≤ P( sup
t∈FN

|Q(t)| > tN ) ≤
∑

t∈FN

P(|Q(t)| > tN )

≤ 4|FN | exp
(
− t2N

8σN

)
= 8λ

1−25/8
N ≤ N1−25/8 ≤ 8N−2,

where FN =
{
jπ/λN ; 0 ≤ j ≤ 2λN −1

}
is the set of the (2λN )th roots of unity,

and where the first inequality follows from Bernstein inequality (see [22]). �

Proof of Theorem 3.1. Notice first that

1

σN

N∑

n=1

δneλn
(t) −→

N→+∞
l(t) , ∀t ∈ T .
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In fact, set En = eλ1
(t)+ · · ·+eλn

(t) and l = l(t). Since (δn)n is nonincreas-
ing, two Abel’s partial summations give:

N∑

n=1

δneλn
(t) =

N−1∑

n=1

(δn − δn+1)En + δNEN

=

N−1∑

n=1

nl(δn − δn+1) +NlδN + o
( N−1∑

n=1

n(δn − δn+1) +NδN

)

= lσN + o (σN ).

Setting QN =
N∑

n=1
(εn − δn)eλn

, we have:

∥∥∥AN − 1

σN

N∑

n=1

δneλn

∥∥∥
∞

≤ 2‖QN‖∞
σN

,

since

∥∥∥
1

SN

N∑

n=1

εneλn
− 1

σN

N∑

n=1

δneλn

∥∥∥
∞

≤
∣∣∣∣

1

SN
− 1

σN

∣∣∣∣
∥∥∥

N∑

n=1

εneλn

∥∥∥
∞

+
1

σN

∥∥∥
N∑

n=1

(εn − δn)eλn

∥∥∥
∞

≤ |SN − σN |
σN

+
‖QN‖∞
σN

=
|QN (0)| + ‖QN‖∞

σN
≤ 2‖QN‖∞

σN
·

Now, Lemma 3.2 gives:

P
(
‖QN‖∞ > 15

√
σN logλN

)
≤ 8λ−2

N ≤ 8N−2

if σN ≥ 25 logλN ; so we get, by the Borel-Cantelli lemma,

‖QN‖∞
σN

= O
(√

logλN

σN

)

almost surely. In view of the hypothesis, we have:

∥∥AN − 1

σN

N∑

n=1

δneλn

∥∥
∞

−→
N→+∞

0 almost surely;

and so, almost surely AN (t) −→
N→+∞

l(t) for each t, which is the desired conclu-

sion. �

3.2 Regularity

Let I be a finite interval of N∗ and ν(I) = |Λ0∩I| be the number of indices n
for which λn ∈ I. In the sequel, we assume that Λ0 has the following regularity
property:
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There exists a continuous eventually strictly increasing function
ϕ : ] 0,+∞[→ ] 0,+∞[ such that:

ν([N, 2N [)

ϕ(N)
−→

N→+∞
1 (3.1)

and:
ϕ(2x)

ϕ(x)
−→

x→+∞
l > 1. (3.2)

Note that l ≤ 2, since ν([2k, 2k+1[≤ 2k implies that (1− ε)k−k0 lk−k0ϕ(2k−k0) ≤
ϕ(2k) ≤ (1 + ε) 2k.

We say that Λ0 is regular if these properties hold.

They are obviously verified when λn = ns, and also, by the Prime Number
Theorem, when λn = pn, with ϕ(x) = x/ log x.

It is easy to see that (3.1) and (3.2) imply that Λ0 has a polynomial growth,
namely that there exist two constants, a, d > 0 such that:

ν([1, k]) ≥ a kd. (3.3)

(or, equivalently, λN ≤ a′N1/d).
It follows that the condition σN/ logλN −→

N→+∞
+∞ of Theorem 3.1 reduces

then to the previous condition σN/ logN −→
N→+∞

+∞ of Theorem 1.10.

Moreover Λ0 satisfies:

λ8n ≥ 2λn for n ≥ 1 large enough. (3.4)

Indeed, if ν([1, 2k−1[) < n ≤ ν([1, 2k[), then 2λn ≤ 2k+1 and it suffices to show
that ν([2k−1, 2k+1[) ≤ 7n. But

ν([2k−1, 2k+1[) ≤ (1 + ε)
(
ϕ(2k−1) + ϕ(2k)

)
≤ (1 + ε)2(l2 + l)ϕ(2k−2)

≤ (1 + ε)3(l2 + l)ν([2k−2, 2k−1[) ≤ (1 + ε)3(l2 + l)ν([1, 2k−1[)

≤ 7ν([1, 2k−1[) ≤ 7n

for ε > 0 small enough, and n large enough.

As in Section 2, we restrict ourselves to selectors with mean δn = αn/n,
where (δn)n decreases to 0, and (αn)n tends to infinity, and moreover, except
in the last theorem, (αn)n increases.

The following lemma is quite similar to Lemma 2.1. We indicate some
changes which are needed, and how the regularity occurs.

Lemma 3.3 Let s ≥ 2 and M be integers and let

Ωs(M) = {ω ∈ Ω ; Λ(ω) ∩ [λM ,+∞[ contains at least a relation of length s }.
We have, for s large enough,

P
(
Ωs(M)

)
≤ (16e)s

ss

∑

j>M

δ2jσ
s−2
j .
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Proof. As in the proof of Lemma 2.1, we write Ωs(M) =
⋃

l≥M+s−1

∆l, where

∆l is defined by

∆l = {ω ; Λ(ω) ∩ [λM ,+∞[ contains at least a relation of length s

and with greatest term λl}.

It suffices to show that

P(∆l) ≤
8s2s−2

(s− 2)!
δ2l σ

s−2
l .

The proof proceeds as in Lemma 2.1, replacing i1, . . . , is−1 and l by λi1 , . . . , λis−1

and λl respectively. The relation (∗∗) gives λis−1
≥ λl/s. The regularity appears

now to say that is−1 ≥ l/8s. Indeed, otherwise, by (3.4), we should have, for s
large enough,

λl > λ8sis−1
≥ 2sλis−1

≥ 2sλl

s
> λl.

This gives the lemma since (αn)n increases:

δis−1
=
αis−1

is−1
≤ αl

is−1
=
αl

l

l

is−1
≤ 8sδl . �

Since this basic lemma still holds for random subsets of prescribed sets Λ0,
the first main theorems of Section 2 still hold and their proofs requires only
minor modifications because of Theorem 3.1. We therefore content ourselves
with stating them.

Theorem 3.4 Let Λ0 be a regular, strongly ergodic set of positive integers.
There exists a set Λ ⊆ Λ0 which is:

(1) p-Sidon for all p > 1, Λ(q) for all q < +∞, CUC, but which is:

(2) strongly ergodic (in particular, CΛ contains c0 and Λ is not a Rosenthal
set).

Theorem 3.5 Let Λ0 be as in the previous theorem, and let 1 < p < 4/3. Then,
there exists a set Λ ⊆ Λ0 which is:

(1) strongly ergodic (in particular, CΛ contains c0 and so Λ is not a Rosenthal
set), but which is:

(2) a CUC-set, Λ(q) for all q < +∞, and

(a) is p-Rider, but is not q-Rider for q < p,

(b) is q-Sidon for all q > p/(2 − p).

Theorem 3.6 Same as in the previous theorem, but instead of property (a):
(a’) Λ is q-Rider for every q > p, but is not p-Rider.
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Theorem 3.7 Let Λ0 = {λ1, . . .} be a regular, strongly ergodic set. Then, there
exists a set Λ ⊆ Λ0 which is strongly ergodic and contains a set E which

(1) has a positive upper density in Λ(ω) (so in particular, CE contains c0 and
E is not a Rosenthal set), and

(2) is a CUC-set, is 4/3-Rider, but not q-Rider for q < 4/3, and is a Λ(q)-set
for all q < +∞; more precisely, for all q > 2, we have ‖f‖q ≤ Cq2‖f‖2

for all f ∈ PE, where C > 0 is a numerical constant.

The proof is the same as that of Theorem 2.7, so we omit it. We merily note
the following facts.

The sequence (δk)k is eventually decreasing. Indeed, for n ≥ nε, we have, by
the regularity conditions (3.1) and (3.2), if ε > 0 is chosen so that (1− ε)2l ≥ 1,

νn+1 ≥ (1 − ε)ϕ(2n+1) ≥ (1 − ε)2l ϕ(2n) ≥ (1 − ε)3l νn ≥ νn .

Next, (3.1) implies that, for some constant α > 0, and for 2q < N ≤ 2q+1,

σN = δ1 + · · · + δN ≥
q∑

n=1

( ∑

k∈In

δk

)
= c

q∑

n=1

log νn

≥ cα

q∑

n=1

n ≥ c(α/2)q2.

Since Λ0 has polynomial growth : λN = O (N1/d), we have logλN ≤ λ2q+1 =
O (q). It follows that:

σN/ logλN −→
N→+∞

+∞ .

Finally, we have to replace the parameter ψA in the proof of Theorem 2.7
by:

ψ′
A = sup

p≥2

‖e′A‖p√
p
, where e′A =

∑

λk∈A

eλk
.

Since we have, for any interval I : ψ′
I ≤ C ν(I)/

√
log ν(I), the rest of the proof

will then work with no essential change. �

Remark. Consider the ψ-parameter associated to the squares, that is:

ψ′
N = sup

q≥2

‖SN‖q√
q

,

where SN (x) =
N∑

n=1

ein2x. It follows from results of Zalcwasser ([61]), that we

have very precise estimates on ‖SN‖q: there exist numerical constants C1, C2 >
0 such that:

C1N
1−2/q ≤ ‖SN‖q ≤ C2N

1−2/q

whenever q ≥ 5 and N ≥ 1 (when q is near 4, a logarithmic factor (logN)1/q

should be added in the upper estimate). Therefore, the a priori crude estimate
used in the proof of Theorem 2.7 is, at least for the squares, optimal, as it is for
the set of all the positive integers.
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Mathématiques d’Orsay 84-01 (1984), exposé 7.
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