## INTERSECTION COHOMOLOGY OF S ${ }^{1}$-ACTIONS ${ }^{1}$

## Gilbert Hector and Martin Saralegi ${ }^{2}$

Given a free action $\Phi$ of the circle $\mathbf{S}^{1}$ on a manifold $M$ there exists a long exact sequence (the Gysin sequence) relating the cohomology of the manifolds $M$ and $M / \mathbf{S}^{1}$ :

$$
\begin{equation*}
\cdots \rightarrow H^{i}(M) \xrightarrow{\oint^{*}} H^{i-1}(B) \xrightarrow{\wedge[e]} H^{i+1}(B) \xrightarrow{\pi^{*}} H^{i+1}(M) \rightarrow \cdots . \tag{*}
\end{equation*}
$$

Here $[e] \in H^{2}\left(M / \mathbf{S}^{1}\right)$ denotes the Euler class of $\Phi$ and $\oint$ the integration along the fibers of the canonical projection $\pi: M \rightarrow M / \mathbf{S}^{1}$. This result has been extended to almost free actions in [9]. In this context, the orbit space is not a manifold but a Sataké manifold.

If the manifold $M$ is compact, the Euler class vanishes if and only if there exists a locally trivial fibration $\Upsilon: M \rightarrow \mathbf{S}^{1}$ whose fibers are transverse to the orbits of $\Phi$ (see [9], [10]). Nevertheless, there are simple examples showing that the above results are not true if we allow the action $\Phi$ to have fixed points.

In this work we construct a Gysin sequence for a generic action extending (*). The first important remark is that the orbit space $M / \mathbf{S}^{1}$ is a singular manifold (more exactly, a stratified pseudomanifold in the sense of [5]), possibly with boundary. Consequently, the intersection cohomology introduced by Goresky and MacPherson in [5] appears as a natural cohomology theory to study $\mathbf{S}^{1}$-actions. The main result of this work (Theorem 3.1.8) shows that for any perversity $\bar{r}=\left(0,0,0, r_{5}, r_{6}, \ldots\right)$ there exists an exact sequence

$$
\cdots \rightarrow H^{i}(M) \xrightarrow{\oint^{*}} I H_{\bar{r}}^{i-1}\left(M / \mathbf{S}^{1}, \partial\left(M / \mathbf{S}^{1}\right)\right) \xrightarrow{\wedge[e]} I H_{\frac{i+1}{i+2}}^{i\left(\left(M-F_{4}\right) / \mathbf{S}^{1}\right) \xrightarrow{\pi^{*}} H^{i+1}(M) \rightarrow \cdots . . . . .}
$$

where $\oint$ is the integration along the orbits of $\Phi, \overline{r+2}=\left(0,1,2, r_{5}+2, r_{6}+2, \ldots\right),[e] \in I H_{\overline{2}}^{2}\left(\left(M-F_{4}\right) / \mathbf{S}^{1}\right)$ is the Euler class of $\Phi, \partial\left(M / \mathbf{S}^{1}\right)$ is the boundary of the orbit space and $F_{4} \subset M$ is the union of the connected components of codimension 4 of the fixed point set.

The vanishing of the Euler class $[e]$ has also a geometrical interpretation. We show that $[e]=0$ is equivalent to the existence of a singular foliation, in the sense of [13], whose restriction to $M-\{$ fixed points\} is a locally trivial fibration over $\mathbf{S}^{1}$, transverse to the orbits of the action $\Phi$ (see Theorem 3.2.4). In this case the codimension of the fixed point set is at most 2.

The main tool used here is a "blow-up" of the action $\Phi$ into a free action $\widetilde{\Phi}: \mathbf{S}^{1} \times \widetilde{M} \rightarrow \widetilde{M}$. We know that the intersection cohomology of the orbit space $M / \mathbf{S}^{1}$ can be calculated using a complex of differential forms of $\widetilde{M} / \mathbf{S}^{1}$ (see [11]). Then, we can apply the usual techniques for free actions in order to get the Gysin sequence and the Euler class.

In Section 1 we introduce the "blow-up" of the action $\Phi$. We recall in the second section the notion of intersection differential form. Section 3 is devoted to the proof of the main results of our work: the Gysin sequence and the geometrical interpretation of the vanishing of the Euler class. In the Appendix we prove some technical Lemmas stated on previous sections.

[^0]In a coming paper we expect to extend this study to the action of a compact Lie group and obtain a spectral sequence relating the cohomology of the manifold, the intersection cohomology of the orbit space and the Lie algebra of $G$.

The second author is grateful to the Department of Mathematics of the University of Illinois at Urbana-Champaign for the hospitality provided during the writing of this paper.

In this work all the manifolds are connected and smooth and "differentiable" means "of class $C^{\infty}$ ". The cohomology $H^{*}(X)$ (resp. the homology $H_{*}(X)$ ) is the singular cohomology (resp. homology) of the space $X$ with real coefficients.

## 1 Stratifications and unfoldings

Let $\Phi: \mathbf{S}^{1} \times M \rightarrow M$ be an effective differentiable action of the circle $\mathbf{S}^{1}$ on a $m$-dimensional manifold $M$. This action induces on $M$ a natural structure of stratified pseudomanifold, invariant by $\mathbf{S}^{1}$. In this section we study this structure and we construct an unfolding of $M$ (see [11]), invariant by $\mathbf{S}^{1}$. Finally, we show the orbit space $M / \mathbf{S}^{1}$ inherits a similar structure in a natural way.

### 1.1 Stratification and unfolding of $M$

The stratification of $M$ comes from the classification of the points of $M$ according to their isotropy subgroups. Since the stratified pseudomanifold $M$ is a stratified space (see [15]) it possesses an unfolding (see [1] and [12]). We recall in this paragraph these notions.
1.1.1 Definitions (see [2]). Let $\Phi: G \times M \rightarrow M$ an action of a closed subgroup $G \subset \mathbf{S}^{1}$. We will write $\Phi(g, x)=\Phi_{g}(x)=g \cdot x$. Throughout this paper every action will be supposed to be effective, that is, each $\Phi_{g}$ is different from the identity, for $g \neq e$. The map $\pi: M \rightarrow M / G$ is the canonical projection onto the orbit space $M / G$.

Consider on $M$ the equivalence relation $\sim$ defined by $x \sim y$ iff $G_{x}=G_{y}$, where $G_{z}$ denotes the isotropy subgroup $\{g \in G / g \cdot z=z\}$ of a point $z \in M$. The connected components of the equivalence classes of this relation are the strata of $M$, which are proper submanifolds of $M$. For each stratum $S$ we will write $G_{S}$ the isotropy subgroup of any point of $S$. There are three types of strata: regular stratum (if $G_{S}=\{$ identity element $e\}$ ), fixed stratum (if $G_{S}=G$ ) and exceptional stratum (if $G_{S} \neq\{e\}$, $G)$. The projection $\pi: S \rightarrow \pi(S)$ is a principal fibration with fiber $G / G_{S}$. The union of regular strata is an open dense subset of $M$ (see [2, page 179]).

We will write $M^{G}$ the fixed point set of $M$. The action is said to be a free action (resp. almost free action) if the strata of $\Phi$ are regular strata (resp. regular or exceptional strata).

Since in this section it will be necessary to deal with actions of $\mathbf{S}^{1}$ and with the induced actions on the links $\mathbf{S}^{\ell}$, we introduce the notion of good action which includes both. The action $\Phi: G \times M \rightarrow M$ will be said a good action if $G=\mathbf{S}^{1}$ or $M=\mathbf{S}^{\ell}$ and $G$ is a finite abelian subgroup of $S O(\ell+1)$. Notice that in this case we have the relation $\Phi(G \times S) \subset S$ for each stratum $S$.

Throughout this section we will suppose that $\Phi$ is a good action. In order to describe the stratification and the unfolding of $M$ we need to recall some facts about the local structure of the action $\Phi$.
1.1.2 Local structure of $M$ (see [2, page 306]). Each stratum $S$ possesses a tubular neighborhood $\mathcal{N}_{S}=\left(\mathcal{T}, \tau, S, D^{\ell+1}\right)$ satisfying:
i) $\mathcal{T}$ is an open neighborhood of $S$,
ii) $\tau: \mathcal{T} \rightarrow S$ is a locally trivial fibration, with fiber the open disk $D^{\ell+1}$, whose restriction to $S$ is the identity,
iii) there exist an orientable orthogonal action $\Psi_{S}: G_{S} \times \mathbf{S}^{\ell} \rightarrow \mathbf{S}^{\ell}$ and an atlas $\mathcal{A}=\{(U, \varphi)\}$ such that $\varphi: \tau^{-1}(U) \rightarrow U \times D^{\ell+1}$ is $G_{S}$-equivariant, that is, $\varphi g \varphi^{-1}(x,[\theta, r])=\left(x,\left[\Psi_{S}(g, \theta), r\right]\right)$ for each $g \in G_{S}$ and $(x,[\theta, r]) \in U \times c \mathbf{S}^{\ell}$. Here we have identified $D^{\ell+1}$ with the cone $c \mathbf{S}^{\ell}=\mathbf{S}^{\ell} \times\left[0,1\left[/ \mathbf{S}^{\ell} \times\{0\}\right.\right.$ and written $[\theta, r]$ an element of the cone $c \mathbf{S}^{\ell}$, and
iv) if $g \in G$ and $\varphi_{j}: \tau^{-1}\left(U_{j}\right) \rightarrow U_{j} \times c \mathbf{S}^{\ell}, j=1,2$, are two charts of $\mathcal{A}$ with $g \cdot U_{1} \subset U_{2}$, then there exists a map $\gamma: U_{1} \rightarrow O(\ell+1)$ such that $\varphi_{2} g \varphi_{1}^{-1}(x,[\theta, r])=(g \cdot x,[\gamma(x) \cdot \theta, r])$ for each $(x,[\theta, r]) \in U_{1} \times c \mathbf{S}^{\ell}$.

Condition iii) implies that the structural group of $\mathcal{A}$ is the centralizer $\mathcal{Z}$ of $G$ in $O(\ell+1)$. Condition iv) means that the group $G$ acts on $\mathcal{T}$ by morphisms of fibration with structural group; it also implies that the map $\tau$ is equivariant. Notice that the action $\Psi_{S}$ is a good action without fixed points. The charts of $\mathcal{A}$ will be said distinguished charts of the tubular neighborhood $\mathcal{N}_{S}$.
1.1.3 Stratification of $M$. For each integer $i$ we put $M_{i}$ the union of strata $S$ of $M$ with $\operatorname{dim} S \leq i$. This defines a filtration of $M$ by closed subsets:

$$
M=M_{m} \supset M_{m-1} \supset \cdots \supset M_{1} \supset M_{0} \supset M_{-1}=\emptyset .
$$

If the subset $M_{m-1}-M_{m-2}$ is not empty then it is a submanifold, not necessarily connected, of codimension 1. The group $G_{S}$ acts trivially on $S \subset M_{m-1}-M_{m-2}$ and each $g \in G_{S}$ acts transversally by the antipodal map. This is impossible because the action $\Phi$ is a good action. Therefore the above filtration becomes:

$$
M=M_{m} \supset M_{m-1}=M_{m-2}=\Sigma_{M} \supset \cdots \supset M_{1} \supset M_{0} \supset M_{-1}=\emptyset .
$$

For the definition of a stratified pseudomanifold we refer a reader to [6]. A stratified pseudomanifold is said to be differentiable if the strata are differentiable manifolds.

Proposition 1.1.4 The above filtration endows $M$ with a structure of differentiable stratified pseudomanifold.

Proof. We proceed by induction on the dimension of $M$. For $\operatorname{dim} M=0$ the Proposition is obvious. Suppose that the statement holds for each manifold with dimension strictly smaller than that of $M$. We first check the local structure near of a stratum $S$ of $M$.

Let $(U, \varphi)$ and $\Psi_{S}$ be as in $\S 1.1 .2$ iii). By induction hypothesis the sphere $\mathbf{S}^{\ell}$ is a stratified pseudomanifold with the structure induced by the action $\Psi_{S}$. We show that $\varphi$ sends diffeomorphically the strata of $\tau^{-1}(U)$ to the strata of $U \times c \mathbf{S}^{\ell}$.

Since the isotropy subgroup of any point in $\tau^{-1}(U)$ is included in $G_{S}$, the map $\varphi$ induces a diffeomorphism between $\tau^{-1}(U) \cap\left(M_{j}-M_{j-1}\right)$ and

$$
\left\{\begin{array}{cl}
\emptyset & \text { if } j \leq m-\ell-2 \\
U \times\{\text { vertex }\} & \text { if } j=m-\ell-1 \\
\left.U \times\left\{\left(\mathbf{S}^{\ell}\right)_{j+\ell-m}-\left(\mathbf{S}^{\ell}\right)_{j+\ell-m-1}\right\} \times\right] 0,1[ & \text { if } j \geq m-\ell
\end{array}\right.
$$

where $\mathbf{S}^{\ell}=\left(\mathbf{S}^{\ell}\right)_{\ell} \supset\left(\mathbf{S}^{\ell}\right)_{\ell-1}=\left(\mathbf{S}^{\ell}\right)_{\ell-2} \supset \cdots \supset\left(\mathbf{S}^{\ell}\right)_{0} \supset \emptyset$ is the stratification induced by $\Psi_{S}$.
If the stratum $S$ is not regular we have $\left.\tau^{-1}(U) \cap\left(M-M_{m-2}\right) \cong U \times\left\{\mathbf{S}^{\ell}-\left(\mathbf{S}^{\ell}\right)_{\ell-2}\right\} \times\right] 0,1[$, which by induction hypothesis is a dense open subset of $U \times c \mathbf{S}^{\ell}$. Hence the open set $M-M_{m-2}$ is a dense subset of $M$.

Remark that the trace on $\tau^{-1}(U)$ of the stratification defined by $G$, is the same as the stratification defined by $G_{S}$. The open $M-M_{m-2}$ is the union of regular strata.

An isomorphism between two differentiable stratified pseudomanifolds is a homeomorphism whose restriction to the strata is a diffeomorphism. In particular, the map $\varphi$ is an isomorphism.

The length of $M$ is the integer $\operatorname{len}(M)$ satisfying $M_{m-\operatorname{len}(M)} \neq M_{m-\operatorname{len}(M)-1}=\emptyset$. For example, $\operatorname{len}(M)>\operatorname{len}\left(\mathbf{S}^{\ell}\right)$. Notice that the action is free if and only if $\operatorname{len}(M)=0$.
1.1.5 Equivariant unfolding. If the action $\Phi$ is free, an equivariant unfolding of $M$ is just an equivariant trivial finite differentiable covering. In the general case, an equivariant unfolding of $M$ is given by

1) a manifold $\widetilde{M}$ supporting a free action of $G$,
2) a continuous equivariant map $\mathcal{L}_{M}: \widetilde{M} \rightarrow M$ such that the restriction to $\widetilde{M}-\mathcal{L}_{M}^{-1}\left(\Sigma_{M}\right)$ is a finite trivial differentiable covering, and
3) for each $x_{0} \in S, S$ stratum non regular, and for each $\widetilde{x}_{0} \in \mathcal{L}_{M}^{-1}\left(x_{0}\right)$ the following diagram commutes

where
i) $\mathcal{U} \subset M$ and $\tilde{\mathcal{U}} \subset \widetilde{M}$ are $G_{S}$-invariant neighborhoods of $x_{0}$ and $\widetilde{x}_{0}$ respectively,
ii) $(U, \varphi)$ is a distinguished chart of a tubular neighborhood of $S$,
iii) $\widetilde{\varphi}$ is a $G_{S}$-equivariant diffeomorphism, and
iv) $P(x, \widetilde{\theta}, r)=\left(x,\left[\mathcal{L}_{\mathbf{S}^{\ell}}(\widetilde{\theta}),|r|\right]\right)$ for a $G_{S^{-}}$-equivariant unfolding $\mathcal{L}_{\mathbf{S}^{\ell}}: \widetilde{\mathbf{S}^{\ell}} \rightarrow \mathbf{S}^{\ell}$.

Notice that for each stratum $S$ the restriction $\mathcal{L}_{M}: \mathcal{L}_{M}^{-1}(S) \rightarrow S$ is a submersion. The map $\mathcal{L}_{M}: \widetilde{\mathcal{U}} \rightarrow \mathcal{U}$ is a $G_{S}$-equivariant unfolding.

Since the construction of an equivariant unfolding is a technical point without influence for the rest of the work, the proof of the following statement can be founded in the Appendix.

Proposition 1.1.6 For every good action $\Phi: G \times M \rightarrow M$ there exists an equivariant unfolding of $M$.

### 1.2 Stratification and unfolding of $B$

Now, we show how the stratification and the unfolding of $M$ induce a stratification and an unfolding in the orbit space $B=M / G$, by means of the canonical projection $\pi: M \rightarrow B$. To this end, we study the local structure of $B$.
1.2.1 Local structure of $B$. For each stratum $S$ of $M$, the image $\pi(\mathcal{T})$ is a neighborhood of $\pi(S)$ (see $\S 1.1 .2$ ). The map $\rho: \pi(\mathcal{T}) \rightarrow \pi(S)$ given by $\rho(\pi(x))=\pi \tau(x)$ is well defined. We are going to show that $\mathcal{N}_{S / G_{S}}=\left(\pi(\mathcal{T}), \rho, \pi(S), D^{\ell+1} / G_{S}\right)$ is a tubular neighborhood of $\pi(S)$ in $B$.

Lemma 1.2.2 The map $\rho: \pi(\tau) \rightarrow \pi(S)$ is a submersion.
Proof. Let $y_{0}$ be a point of $\pi(S)$. We choose a distinguished chart $(U, \varphi)$ of $\mathcal{N}_{S}$ such that:

1) $V=\pi(U)$ is a neighborhood of $y_{0}$, and
2) there exists a differentiable section $\sigma$ of $\pi: U \rightarrow V$.

Thus, if $x$ is a point of $U$ there exists $g \in G$ with $g \cdot x \in \sigma(V)$. The element $g$ is not unique, but $g^{\prime} \cdot x \in \sigma(V)$ implies $g^{-1} g^{\prime} \in G_{S}$, then $\pi(U)=\pi \sigma(V)=\sigma(V) / G_{S}$. Because $\tau$ is equivariant we get
$\pi \tau^{-1}(U)=\pi \tau^{-1} \sigma(V)=\tau^{-1} \sigma(V) / G_{S}$. Since the restriction $\varphi: \tau^{-1} \sigma(V) \rightarrow \sigma(V) \times c \mathbf{S}^{\ell}$ is an equivariant diffeomorphism we obtain the commutative diagram

$$
\begin{array}{ccc}
\tau^{-1} \sigma(V) \xrightarrow{\varphi} & \sigma(V) \times c \mathbf{S}^{\ell} \\
\pi \left\lvert\, \begin{array}{lll} 
\\
& & \\
\rho^{-1}(V) & & \psi
\end{array}\right. & V \times c\left(\mathbf{S}^{\ell} / G_{S}\right)
\end{array}
$$

where $p: \mathbf{S}^{\ell} \rightarrow \mathbf{S}^{\ell} / G_{S}$ is the canonical projection and $\Pi(y,[\theta, r])=(\pi(y),[p(\theta), r])$. Finally, the homeomorphism $\psi$ satisfies $p r_{V} \psi \pi(x)=\pi \tau(x)=\rho \pi(x)$, where $p r_{V}: V \times c\left(\mathbf{S}^{\ell} / G_{S}\right) \rightarrow V$ is the canonical projection.

The family $\mathcal{B}=\{(V, \psi)\}$ previously constructed is an atlas of $\mathcal{N}_{S / G_{S}}$. Each $(V, \psi)$ will be said a distinguished chart of $\mathcal{N}_{S / G_{S}}$. In order to simplify some calculations, we shall suppose that each $V$ is a cube, that is, it is diffeomorphic to a product of intervals.
1.2.3 We have already seen that the family $\{\pi(S) / S$ stratum of $M\}$ is a partition of $B$ in submanifolds, called strata of $B$. This leads us to the filtration

$$
\cdots \supset B_{j} \supset B_{j-1} \supset \cdots \supset B_{0} \supset B_{-1}=\emptyset
$$

where each $B_{j}$ is the union of the strata of $B$ with dimension less or equal than $j$. This filtration enjoys of the following three properties:
a) $B=B_{n}$, where $n=m-\operatorname{dim} G$,
b) $B-B_{n-1}$ is a dense open set, and
c) $B_{n-1}-B_{n-2}=\cup \pi\left(\left\{\right.\right.$ strata of codimension 2 with $\left.\left.G_{S}=\mathbf{S}^{1}\right\}\right)$.

In order to proof a) consider a regular stratum $S$. The projection $\pi: S \rightarrow \pi(S)$ is a $G$-principal bundle and hence $\operatorname{dim} \pi(S)=m-\operatorname{dim} G$. Let $S$ be a stratum of $M_{m-2}$. Consider $(U, \varphi)$ a distinguished chart of $\mathcal{N}_{S}$. The density of $M-M_{m-2}$ implies the existence of a $m$-dimensional stratum $R$ of $M$ satisfying $\tau^{-1}(U) \cap R \neq \emptyset$. There exists a stratum $\mathcal{R}$ of $\mathbf{S}^{\ell}$ (for the action $\Psi_{S}$ ) verifying $\left.\varphi\left(\tau^{-1}(U) \cap R\right)=U \times \mathcal{R} \times\right] 0,1[$. Hence, $\operatorname{dim} \pi(S)=\operatorname{dim} U \leq \operatorname{dim} R=m-\operatorname{dim} G$, and therefore $B=B_{n}$.

Property b) is proved in a similar way.
Finally, if $\pi(S)$ is a stratum of dimension $n-1$, we get from the previous diagram $\operatorname{dim}\left(\mathbf{S}^{\ell} / G_{S}\right)=0$. Thus $G_{S}=\mathbf{S}^{\ell}$ and $\ell=1$.

For the definition of stratified pseudomanifold with boundary we refer the reader to [5].
Proposition 1.2.4 The filtration $B=B_{n} \supset B_{n-2}=\Sigma_{B} \supset B_{n-3} \supset \cdots \supset B_{0} \supset B_{-1}=\emptyset$, endows $B$ with a differentiable stratified pseudomanifold structure, possibly with boundary.

Proof. Assume that the statement is true for any good action of length smaller than len $(M)$. The boundary $\partial B=\cup\left\{\pi(S)\right.$ strata of $B / G_{S}=\mathbf{S}^{1}$ and $\left.\operatorname{dim} S=m-2\right\}$ is a manifold. According to $\S 1.2 .2, \partial B$ possesses a neighborhood $N$ diffeomorphic to the product $B \times[0,1[$. It remains to show that $B-\partial B$ is a stratified pseudomanifold. We need to check the local behavior of the above filtration.

Let $\pi(S)$ be a stratum of $B-\partial B$ and $(V, \psi) \in \mathcal{B}$ a chart. According to $\S 1.2 .2$, for each stratum $\pi\left(S_{0}\right) \neq \pi(S)$ of $B$ meeting $\rho^{-1}(V)$ there exists a stratum $\sigma_{0}$ of $\mathbf{S}^{\ell}$ such that the diagram

commutes. By induction, the quotient $\mathbf{S}^{\ell} / G_{S}$ is a stratified pseudomanifold, with strictly positive dimension and without boundary (see $\S 1.2 .3 \mathrm{c}$ )). Finally, since $\pi$ and $p$ are submersions and $\varphi$ is a diffeomorphism we get that $\psi$ is a diffeomorphism. Analogously we show that $\psi$ sends diffeomorphically $\rho^{-1} \cap \pi(S)$ to $V$. Moreover $\psi$ is an isomorphism.
1.2.5 Unfolding of $B$. We recall the definition of unfolding of a stratified pseudomanifold given in [11]. For the case len $(M)=0$ an unfolding of $B$ is a finite trivial covering. Assume len $(M)>0$. An unfolding of $B$ is a continuous map $\mathcal{L}_{B}$ from a manifold $\widetilde{B}$ to $B$, such that the restriction $\mathcal{L}_{B}: \widetilde{B}-\mathcal{L}_{B}^{-1}\left(\Sigma_{B}\right) \rightarrow B-\Sigma_{B}$ is a diffeomorphism in each connected component and the following condition holds:

For each $y_{0} \in \pi(S), S$ non regular stratum, and for each $\widetilde{y}_{0} \in \mathcal{L}_{B}^{-1}\left(y_{0}\right)$ there exists a commutative diagram

where:
i) $\mathcal{V} \subset B$ and $\widetilde{\mathcal{V}} \subset \widetilde{B}$ are neighborhoods of $y_{0}$ and $\widetilde{y}_{0}$ respectively,
ii) $\quad(V, \psi) \in \mathcal{B}$ is a distinguished chart of a tubular neighborhood of $S / G_{S}$,
iii) $\tilde{\psi}$ is a diffeomorphism, and
iv) $R(x, \widetilde{\zeta}, r)=\left(x,\left[\mathcal{L}_{\mathbf{S}^{\ell} / G_{S}}(\widetilde{\zeta}),|r|\right]\right)$, for an unfolding $\mathcal{L}_{\mathbf{S}^{\ell} / G_{S}}: \widetilde{\mathbf{S}^{\ell} / G_{S}} \rightarrow \mathbf{S}^{\ell} / G_{S}$.

Remark that for each stratum $S$ of $M$ the restriction $\mathcal{L}_{B}: \mathcal{L}_{B}^{-1}\left(S / G_{S}\right) \rightarrow S / G_{S}$ is a submersion. The existence of equivariant unfoldings for $M$ implies the existence of unfoldings for $B$.

Proposition 1.2.6 For every good action $\Phi: G \times M \rightarrow M$ there exists a commutative diagram

where:
a) $\widetilde{\pi}: \widetilde{M} \rightarrow \widetilde{B}$ is a principal fibration,
b) $\mathcal{L}_{M}: \widetilde{M} \rightarrow M$ is an equivariant unfolding of $M$, and
c) $\mathcal{L}_{B}$ is an unfolding of $B$.

Proof. See Appendix.

## 2 Differential forms

The aim of this section is to recall the notion of intersection differential forms (see [11]). We also establish a first relation between the intersection differential forms of $M$ and those of $B$.

From now on we will suppose $G=\mathbf{S}^{1}$. We will write $\Sigma_{M}=M_{m-2}$ and $\Sigma_{B}=B_{n-2}$ the singular parts of $M$ and $B$ respectively. We fix two unfoldings $\mathcal{L}_{M}: \widetilde{M} \rightarrow M$ and $\mathcal{L}_{B}: \widetilde{B} \rightarrow B$ satisfying $\S 1.2 .6$. By $\bar{q}=\left(q_{2}, \ldots, q_{m}\right)$ we denote a perversity, that is $q_{2}=0$ and $q_{k} \leq q_{k+1} \leq q_{k}+1$ (see [5]).

### 2.1 Intersection differential forms

The intersection cohomology of $M$ and $B$ can be calculated with a complex of differential forms on $M-\Sigma_{M}$ and $B-\Sigma_{B}$ respectively. This corresponds to the complex of intersection differential forms (see [11]), which we recall now.
2.1.1 A differential form $\omega$ on $M-\Sigma_{M}$ (resp. $B-\Sigma_{B}$ ) is liftable if there exists a differential form $\widetilde{\omega}$ on $\widetilde{M}$ (resp. $\widetilde{B}$ ), called the lifting of $\omega$, coinciding with $\mathcal{L}_{M}^{*} \omega$ on $\mathcal{L}_{M}^{-1}\left(M-\Sigma_{M}\right)\left(\right.$ resp. $\mathcal{L}_{B}^{*} \omega$ on $\left.\mathcal{L}_{B}^{-1}\left(B-\Sigma_{B}\right)\right)$. By density this form is unique.

If the forms $\omega$ and $\eta$ are liftable then the forms $\omega+\eta, \omega \wedge \eta$ and $d \omega$ are liftable, and we have the following relations:

$$
\widetilde{\omega+\eta}=\widetilde{\omega}+\widetilde{\eta}, \widetilde{\omega \wedge \eta}=\widetilde{\omega} \wedge \widetilde{\eta}, \text { and } \widetilde{d \omega}=d \widetilde{\omega}
$$

Hence, the family of liftable differential forms is a differential subcomplex of the De Rham complex of $\widetilde{M}$ (resp. $\widetilde{B}$ ).
2.1.2 Cartan's filtration. Let $\kappa: N \rightarrow C$ be a submersion with $N$ and $C$ manifolds. For each differential form $\omega \not \equiv 0$ on $N$ we define the perverse degree of $\omega$, written $\|\omega\|_{C}$, as the smallest integer $k$ verifying:

$$
\begin{equation*}
\text { If } \xi_{0}, \ldots, \xi_{k} \text { are vector fields on } N \text { tangents to the fibers of } \kappa \text { then } \tag{4}
\end{equation*}
$$

$$
i_{\xi_{0}} \cdots i_{\xi_{k}} \omega \equiv 0
$$

Here $i_{\xi_{j}}$ denotes the interior product by $\xi_{j}$. We will write $\|0\|_{C}=-\infty$. For each $k \geq 0$ we let $F_{k} \Omega_{N}^{*}=$ $\left\{\omega \in \Omega^{*}(N) /\|\omega\|_{C} \leq k\right.$ and $\left.\|d \omega\|_{C} \leq k\right\}$. This is the Cartan's filtration of $\kappa$ (see [3]).

Notice that for $\alpha, \beta \in \Omega^{*}(N)$ we have the following relations

$$
\begin{equation*}
\|\alpha+\beta\|_{C} \leq \max \left(\|\alpha\|_{C},\|\beta\|_{C}\right) \text { and }\|\alpha \wedge \beta\|_{C} \leq\|\alpha\|_{C}+\|\beta\|_{C} \tag{5}
\end{equation*}
$$

2.1.3 The allowability condition is written in terms of the Cartan's filtration of the submersions $\mathcal{L}_{M}: \mathcal{L}_{M}^{-1}(S) \rightarrow S$ and $\mathcal{L}_{B}: \mathcal{L}_{B}^{-1}\left(S / G_{S}\right) \rightarrow S / G_{S}$, where $S$ is a stratum of $M$.

A liftable form $\omega$ on $M-\Sigma_{M}$ is a $\bar{q}$-intersection differential form if for each stratum $S$ included in $\Sigma_{M}$ the restriction of $\widetilde{\omega}$ to $\mathcal{L}_{M}^{-1}(S)$ belongs to $F_{q_{k}} \Omega_{\mathcal{L}_{M}^{-1}(S)}^{*}$, where $k$ is the codimension of $S$.

Analogously, a liftable form $\omega$ on $B-\Sigma_{B}$ is a $\bar{q}$-intersection differential form if for each stratum $S / G_{S}$ included in $\Sigma_{B}$ the restriction of $\widetilde{\omega}$ to $\mathcal{L}_{B}^{-1}\left(S / G_{S}\right)$ belongs to $F_{q_{k}} \Omega_{\mathcal{L}_{B}^{-1}\left(S / G_{S}\right)}^{*}$, where $k$ is the codimension of $S / G_{S}$.

We shall write $\mathcal{K}_{\bar{q}}^{*}(M)$ (resp. $\left.\mathcal{K}_{\bar{q}}^{*}(B)\right)$ the complex of $\bar{q}$-intersection differential forms. It is a differential subcomplex of the De Rham complex of $\widetilde{M}$ (resp. $\widetilde{B}$ ), but it is not always an algebra. It coincides with $\Omega^{*}(M)\left(\operatorname{resp} . \Omega^{*}(B)\right)$ if the action $\Phi$ is free.

We show in [11] that the complex of $\bar{q}$-intersection differential forms computes the intersection cohomology. In fact we have the isomorphisms

- $H^{*}\left(\mathcal{K}_{\bar{q}}(M)\right) \cong I H_{*}^{\bar{p}}(M) \cong H_{*}(M) \cong H^{*}(M)$,
- $H^{*}\left(\mathcal{K}_{\bar{q}}(B)\right) \cong I H_{*}^{\bar{p}}(B)$,
- $H^{*}\left(\mathcal{K}_{\bar{q}}(B, \partial B)\right) \cong I H_{*}^{\bar{p}}(B, \partial B)$.

Here $\bar{p}$ denotes the complementary perversity of $\bar{q}$ (see [5]) and $\mathcal{K}_{\bar{q}}(B, \partial B)$ the complex of differential forms of $\mathcal{K}_{\bar{q}}(B)$ which vanish on $\partial B$. In order to make uniform the notations, we will write: $H^{*}\left(\mathcal{K}_{\bar{q}}(M)\right)=$ $I H_{\bar{q}}^{*}(M), H^{*}\left(\mathcal{K}_{\bar{q}}(B)\right)=I H_{\bar{q}}^{*}(B)$ and $H^{*}\left(\mathcal{K}_{\bar{q}}(B, \partial B)\right)=I H_{\bar{q}}^{*}(B, \partial B)$.
2.1.4 An important tool, used in Section 3 to get the Gysin sequence, is the study of the relationship between the degrees defining the Cartan's filtration on $M$ and $B$. A first step in this direction is given by

$$
\begin{equation*}
\left\|\tilde{\pi}^{*} \eta\right\|_{S}=\|\eta\|_{S / G_{S}} \tag{6}
\end{equation*}
$$

where $S$ is a stratum of $\Sigma_{M}$ and $\eta$ is a differential form on $\mathcal{L}_{B}^{-1}\left(S / G_{S}\right)$. If the action $\Phi$ has not fixed points, then the codimensions of $S$ and $S / G_{S}$ are the same. Therefore, the equality (6) implies

$$
\omega \in \mathcal{K}_{\bar{q}}^{*}(B) \Leftrightarrow \pi^{*} \omega \in \mathcal{K}_{\bar{q}}^{*}(M) .
$$

In this case the map $\pi^{*}: I H_{\bar{q}}^{*}(B) \rightarrow H^{*}(M)$ is well defined.
In order to proof (6) it suffices to remark that in the following commutative diagram

the restriction of $\tilde{\pi}$ to the fibers of $\mathcal{L}_{M}$ is a submersion onto the fibers of $\mathcal{L}_{B}$.

### 2.2 Invariant forms

It is well known that the De Rham cohomology of a manifold supporting an action of $G$ is calculated by the complex of differential forms invariant by the action. The same phenomenon happens when the intersection cohomology is involved.
2.2.1 A differential form $\omega$ on $M-\Sigma_{M}$ is called invariant under the action of $G$ if it satisfies $\Phi_{g}^{*} \omega=\omega$ for each $g \in G$. The invariant differential forms are a subalgebra of $\Omega^{*}\left(M-\Sigma_{M}\right)$, which will be denoted by $I \Omega^{*}\left(M-\Sigma_{M}\right)$. It is shown in [7] that the inclusion $I \Omega^{*}\left(M-\Sigma_{M}\right) \hookrightarrow \Omega^{*}\left(M-\Sigma_{M}\right)$ induces an isomorphism in cohomology.

The following Lemmas are devoted to prove that the operators used in [7] send the liftable differential forms to themselves. This will prove that the inclusion $I \mathcal{K}_{\bar{q}}^{*}(M)=I \Omega^{*}\left(M-\Sigma_{M}\right) \cap \mathcal{K}_{\bar{q}}^{*}(M) \hookrightarrow \mathcal{K}_{\bar{q}}^{*}(M)$ induces an isomorphism in cohomology.

Lemma 2.2.2 Consider $\Phi: G \times M \rightarrow M$ and $\Phi^{\prime}: G \times M^{\prime} \rightarrow M^{\prime}$ two actions and $f: M \rightarrow M^{\prime}$ an equivariant differentiable map. Suppose there exists an equivariant differentiable map $\widetilde{f}: \widetilde{M} \rightarrow \widetilde{M^{\prime}}$ with $\mathcal{L}_{M^{\prime}} \widetilde{f}=f \mathcal{L}_{M}$. If $G_{x}=G_{f(x)}$ for each $x \in M$, then the map $f^{*}$ sends $\mathcal{K}_{\bar{q}}^{*}\left(M^{\prime}\right)$ to $\mathcal{K}_{\bar{q}}^{*}(M)$.

Proof. For each form $\omega \in \mathcal{K}_{\bar{p}}^{*}\left(M^{\prime}\right)$ the lifting of $f^{*} \omega$ is $\widetilde{f^{*}} \widetilde{\omega}$ because $\mathcal{L}_{M}^{*} f^{*} \omega=\widetilde{f}^{*} \mathcal{L}_{M^{\prime}}^{*}, \omega$ on $\widetilde{M}-\mathcal{L}_{M}^{-1}\left(\Sigma_{M}\right)$. Furthermore, for each stratum $S$ of $\Sigma_{M}$ there exists a stratum $S^{\prime}$ of $\Sigma_{M^{\prime}}$ with $f(S) \subset S^{\prime}$. This gives us the commutative diagram


Therefore $\left\|\widetilde{f^{*}} \widetilde{\omega}\right\|_{S^{\prime}} \leq\|\widetilde{\omega}\|_{S}$, which implies $f^{*}\left(F_{q_{k}} \Omega_{\mathcal{L}_{M^{\prime}}^{-1}\left(S^{\prime}\right)}^{*}\right) \subset F_{q_{k}} \Omega_{\mathcal{L}_{M}^{-1}(S)}^{*}$ and so $f^{*} K_{\bar{q}}^{*}\left(M^{\prime}\right) \subset K_{\bar{q}}^{*}(M)$.
For each manifold $N$, we will consider on the product $N \times M$ the action $G$ defined by $g \cdot(x, y)=(x, g \cdot y)$ and the equivariant unfolding $\mathcal{L}_{N \times M}=$ identity $\times \mathcal{L}_{M}: N \times \widetilde{M} \rightarrow N \times M$. We shall write $\pi_{N}: N \times M \rightarrow N$ the canonical projection.

Lemma 2.2.3 Let $\Delta$ be a differential form on $N$ with compact support. Then,

$$
\omega \in \mathcal{K}_{\bar{q}}^{*}(N \times M) \Rightarrow \oint_{N} \omega \wedge \pi_{N}^{*} \Delta \in \mathcal{K}_{\bar{q}}^{*}(M)
$$

where $\oint_{N}$ denotes the integration along the fibers of $\pi_{N}$.
Proof. Since the fibers of $\mathcal{L}_{N \times M}: N \times \mathcal{L}_{M}^{-1}(S) \rightarrow N \times S$ are tangent to the second factor then $\pi_{N}^{*} \Delta \in$ $\mathcal{K}_{\overline{0}}^{*}(N \times M)$. Hence $\omega \wedge \pi_{N}^{*} \Delta \in \mathcal{K}_{\bar{q}}^{*}(N \times M)$. The result follows by noticing that the $N$-factor is tangent to the strata.

## Lemma 2.2.4

$$
\omega \in \mathcal{K}_{\bar{q}}^{*}(M) \Rightarrow \Phi^{*} \omega \in \mathcal{K}_{\bar{q}}^{*}(G \times M)
$$

Proof. Apply Lemma 2.2 .2 for $f=\Phi$ and $\widetilde{f}=\widetilde{\Phi}$.
Lemma 2.2.5 Let $H: N \times[0,1] \times M \rightarrow N \times M$ be a differentiable map defined by $H(x, t, y)=\left(H_{0}(x, t), y\right)$. Then

$$
\omega \in \mathcal{K}_{\bar{q}}^{*}(N \times M) \Rightarrow h \omega \in \mathcal{K}_{\bar{q}}^{*}(N \times M)
$$

where $h \omega(x, y)=\int_{0}^{1}\left(H^{*} \omega\right)(x, t, y)(\partial / \partial t) d t$.
Proof. Consider the commutative diagram

where $\widetilde{H}(x, t, \widetilde{y})=\left(H_{0}(x, t), \widetilde{y}\right)$. Using $\S 2.2 .2$ we deduce that $H^{*} \omega$ belongs to $\mathcal{K}_{\bar{q}}^{*}(N \times[0,1] \times M)$. Now, since the $[0,1]$-factor is tangent to the strata, we get that $h \omega$ belongs to $\mathcal{K}_{\bar{q}}^{*}(N \times M)$.

The operators used in [7] to show that the inclusion $I \Omega^{*}\left(M-\Sigma_{M}\right) \hookrightarrow \Omega^{*}\left(M-\Sigma_{M}\right)$ induces an isomorphism in cohomology are composition of operators of type $\S 2.2 .3, \S 2.2 .4$ and $\S 2.2 .5$. Therefore we get

Proposition 2.2.6 The inclusion $\mathcal{K}_{\bar{q}}^{*}(M) \hookrightarrow \mathcal{K}_{\bar{q}}^{*}(M)$ induces an isomorphism in cohomology.

### 2.3 Decomposition of invariant forms

In the case of a free action, each invariant form on $M$ is written in terms of the differential forms on the orbit space $B$ and the fiber $G$. We extend this decomposition to the case of non-free actions. First we need some definitions.
2.3.1 The fundamental vector field $X$ of $\Phi$ is defined by the relation $X(x)=T_{e} \Phi_{x}(1)$, where $\Phi_{x}(g)=$ $g \cdot x$. This vector field is invariant by the action of $G$ and tangent to their orbits. In particular, it vanishes on the set of fixed points. Since $\mathcal{L}_{M}$ is equivariant then the fundamental vector field $\widetilde{X}$ of $\widetilde{\Phi}$ and $X$ are $\left(\mathcal{L}_{M}\right)_{*}$-related. That is, $\left(\mathcal{L}_{M}\right)_{*} \widetilde{X}=X \circ \mathcal{L}_{M}$.

We define the fundamental forms $\chi$ and $\widetilde{\chi}$ by

$$
\chi=\mu(X,) \text { and } \widetilde{\chi}=\widetilde{\mu}(\widetilde{X},)
$$

where $\mu$ and $\widetilde{\mu}$ are two riemannian metrics on $M-\Sigma_{M}$ and $\widetilde{M}$ respectively. These forms depend on the choice of $\mu$ and $\widetilde{\mu}$. Improving the properties of $\mu$ and $\widetilde{\mu}$ we will have richer fundamental forms.

Lemma 2.3.2 There exist two riemannian metrics $\mu$ and $\widetilde{\mu}$, on $M-\Sigma_{M}$ and $\widetilde{M}$ respectively, satisfying:
a) $\mu$ and $\widetilde{\mu}$ are invariant,
b) $\mathcal{L}_{M}^{*} \mu=\widetilde{\mu}$ on $\widetilde{M}-\mathcal{L}_{M}^{-1}\left(\Sigma_{M}\right)$,
c) for each exceptional stratum $S$ the differential form $\widetilde{\chi}$ is a basic form, relatively to $\mathcal{L}_{M}: \mathcal{L}_{M}^{-1}(S) \rightarrow S$.
d) for each fixed stratum $S$ there exists a $G_{S}$-equivariant riemannian metric $\widetilde{\mathcal{M}}$ on $\widetilde{\mathbf{S}^{\ell}}$ such that the structural group of $\mathcal{L}_{M}: \mathcal{L}_{M}^{-1}(S) \rightarrow S$ can be reduced to the group of isometries of $\left(\widetilde{\mathbf{S}^{\ell}}, \widetilde{\mathcal{M}}\right)$.

Proof. See Appendix
2.3.3 A riemannian metric $\mu$ on $M-\Sigma_{M}$ is said to be a good metric of $M$ if there exists $\widetilde{\mu}$ satisfying the previous conditions a), b), c) and d). From now on we fix a good metric $\mu$ of $M$. The following properties of the fundamental forms associated to $\mu$ and $\widetilde{\mu}$ arise directly from the preceding Lemma.
i) The Lie derivatives $L_{X} \chi$ and $L_{\widetilde{X}} \widetilde{\chi}$ are 0 .
ii) $\widetilde{\chi}(\widetilde{X})=h \neq 0$ (and we will suppose $h=1$ ).
iii) $\|\widetilde{\chi}\|_{S}=0$ if $S$ is an exceptional stratum.
iv) $\|\widetilde{\chi}\|_{S}=1$ if $S$ is a fixed stratum.
v) For each fixed stratum $S$ we have $\widetilde{\varphi}^{*} \widetilde{\chi_{\mathbf{S}^{\ell}}}=\widetilde{\chi}$ on the fibers of $\mathcal{L}_{M}: \mathcal{L}_{M}^{-1}(S) \rightarrow S$. Here $\widetilde{\chi_{\mathbf{S}^{\ell}}}$ denotes the fundamental form associated to $\left(\widetilde{\mathbf{S}^{\ell}}, \widetilde{\mathcal{M}}\right)$ and $(\varphi, U)$ is a distinguished chart.
2.3.4 For each $\omega \in I \Omega^{*}\left(M-\Sigma_{M}\right)$ there exist two forms $\omega_{1}, \omega_{2} \in \Omega^{*}\left(B-\Sigma_{B}\right)$ such that

$$
\omega=\pi^{*} \omega_{1}+\chi \wedge \pi^{*} \omega_{2}
$$

The forms $\omega_{1}$ and $\omega_{2}$ are unique, in fact $\pi^{*} \omega_{1}=i_{X} \omega$ and $\pi^{*} \omega_{2}=\omega-\chi \wedge i_{X} \omega$. The above expression will be called the decomposition of $\omega$.

Analogously, for each $\eta \in I \Omega^{*}(\widetilde{M})$ there exist two unique forms $\eta_{1}, \eta_{2} \in \Omega^{*}(\widetilde{B})$ such that

$$
\eta=\widetilde{\pi}^{*} \eta_{1}+\widetilde{\chi} \wedge \widetilde{\pi}^{*} \eta_{2}
$$

This expression is called the decomposition of $\eta$.
If $\omega$ is liftable we get the following relation between the two decompositions:

$$
\widetilde{\omega}=\widetilde{\omega_{1}}+\widetilde{\chi} \wedge \widetilde{\omega_{2}}
$$

The relation between the perverse degree of $\eta, \eta_{1}$ and $\eta_{2}$ is the following.

Proposition 2.3.5 For each form $\eta \in \Omega^{*}(\widetilde{M})$ and for each stratum $S$ of $M$ we get

$$
\|\eta\|_{S}=\max \left(\left\|\eta_{1}\right\|_{S / G_{S}},\|\widetilde{\chi}\|_{S}+\left\|\eta_{2}\right\|_{S / G_{S}}\right)
$$

Proof. By (5) and (6) it suffices to show that $\|\eta\|_{S} \geq \max \left(\left\|\eta_{1}\right\|_{S / G_{S}},\|\widetilde{\chi}\|_{S}+\left\|\eta_{2}\right\|_{S / G_{S}}\right)$. We distinguish two cases.

- $S$ is an exceptional stratum. Fix $k \geq 0$. The condition (4) on $\eta$ is equivalent to
$i_{\xi_{0}} \cdots i_{\xi_{k}} \widetilde{\pi}^{*} \eta_{1} \equiv i_{\xi_{0}} \cdots i_{\xi_{k}} \widetilde{\pi}^{*} \eta_{2} \equiv 0$ for each family $\left\{\xi_{0}, \ldots, \xi_{k}\right\}$ of vector fields tangents to the fibers of $\mathcal{L}_{M}: \mathcal{L}_{M}^{-1}(S) \rightarrow S$ (see $\left.\S 2.3 .2 \mathrm{c}\right)$ ).

From (3) this condition is equivalent to
$i_{\xi_{0}} \cdots i_{\xi_{k}} \eta_{1}=i_{\xi_{0}} \cdots i_{\xi_{k}} \eta_{2} \equiv 0$ for each family $\left\{\xi_{0}, \ldots, \xi_{k}\right\}$ of vector fields tangents to the fibers of $\mathcal{L}_{B}: \mathcal{L}_{B}^{-1}\left(S / G_{S}\right) \rightarrow S / G_{S}$,
which holds if and only if $k \geq \max \left(\left\|\eta_{1}\right\|_{S / G_{S}},\left\|\eta_{2}\right\|_{S / G_{S}}\right)$. Thus $\|\eta\|_{S} \geq \max \left(\left\|\eta_{1}\right\|_{S / G_{S}},\|\widetilde{\chi}\|_{S}+\right.$ $\left\|\eta_{2}\right\|_{S / G_{S}}$ ) (see §2.3.3 iii)).

- $S$ is a fixed stratum. Fix $k \geq 0$. Since $\tilde{X}$ is tangent to the fibers of $\mathcal{L}_{M}: \mathcal{L}_{M}^{-1}(S) \rightarrow S$, condition (4) on $\eta$ becomes
$i_{\xi_{0}} \cdots i_{\xi_{k}} \widetilde{\pi}^{*} \eta_{1} \equiv 0$ and $i_{\xi_{0}} \cdots i_{\xi_{k-1}} \widetilde{\pi}^{*} \eta_{2} \equiv 0$ for each family $\left\{\xi_{0}, \ldots, \xi_{k}\right\}$ of vector fields tangents to the fibers of $\mathcal{L}_{M}: \mathcal{L}_{M}^{-1}(S) \rightarrow S$.
Now we proceed as above taking into account that $\|\widetilde{\chi}\|_{S}=1$ (see $\S 2.3 .3$ iv)).

The form $i_{X} d \chi$ vanishes identically. Thus, the decomposition of $d \chi$ is reduced to $d \chi=\pi^{*} e$ for a form $e \in \Omega^{2}\left(B-\Sigma_{B}\right.$ ), called the Euler form of $\Phi$ (we will also write $e_{\mu}$ ). Remark that $e$ is a cycle. The Euler form $\widetilde{e}$ of $\widetilde{\Phi}$ is the lifting of $e$.

Proposition 2.3.6 For each stratum $S$ of $M$ we get

$$
\|\widetilde{e}\|_{S / G_{S}}=\left\{\begin{array}{cl}
2 & \text { if } S \subset M^{\mathbf{S}^{1}} \text { and } \operatorname{dim} S<m-2 \\
-\infty, 0 & \text { otherwise } .
\end{array}\right.
$$

Proof. We distinguish two cases.

- $S$ is an exceptional stratum. Since $\widetilde{\chi}$ is a basic form we get $\|\widetilde{e}\|_{S / G_{S}}=\|d \widetilde{\chi}\|_{S} \leq 0$ (see (6)).

Remark that if $\Phi$ is almost free, then $e \in \mathcal{K}_{\overline{0}}^{2}(B)$.

- $S$ is a fixed stratum. Each fiber $F$ of $\mathcal{L}_{M}: \mathcal{L}_{M}^{-1}(S) \rightarrow S$ is equivariantly isometric to $\left(\widetilde{\mathbf{S}^{\ell}}, \widetilde{\mathcal{M}}\right)$ endowed with the free action $\widetilde{\Psi_{S}}$. The restriction $\left.\widetilde{\chi}\right|_{F}$ becomes the fundamental form $\widetilde{\mathcal{Y}}$ of $\widetilde{\Psi_{S}}$. Then, we get the decomposition

$$
\begin{equation*}
\widetilde{e}=\widetilde{\varepsilon}_{1}+\widetilde{\varepsilon}_{2} \tag{7}
\end{equation*}
$$

where the restriction $\left.\widetilde{\varepsilon}_{1}\right|_{F}$ is the Euler form $\widetilde{\epsilon}$ of $\widetilde{\Psi_{S}}$ and $\left.\widetilde{\varepsilon}_{2}\right|_{F}$ vanishes identically.
If $\ell>1$ we claim that the Euler form $\widetilde{\epsilon} \in \Omega^{2}\left(\widetilde{\mathbf{S}^{\ell} / G_{S}}\right)$ is not zero; in this case the restriction $\left.\widetilde{e}\right|_{F}$ does not vanishes identically and therefore the perverse degree $\|\widetilde{e}\|_{S / G_{S}}$ is 2 . In order to prove the claim it suffices to verify that $[\epsilon] \in I H_{\overline{0}}^{2}\left(\mathbf{S}^{\ell} / G_{S}\right)$ is non-zero. Suppose that there exists $\gamma \in \mathcal{K}_{\overline{0}}^{1}\left(\mathbf{S}^{\ell} / G_{S}\right)$ with $d \gamma=\epsilon$. Thus, the differential form $\chi_{\mathbf{S}^{\ell}}-p^{*} \gamma$ is a cycle of $\mathcal{K}_{\overline{0}}^{1}\left(\mathbf{S}^{\ell}\right)$, where $\chi_{\mathbf{S}^{\ell}}$ is the fundamental form of $\Psi_{S}$. Since $I H_{\overline{0}}^{1}\left(\mathbf{S}^{\ell}\right) \cong H^{1}\left(\mathbf{S}^{\ell}\right)=0$ there exists $f \in \mathcal{K}_{\overline{0}}^{0}\left(\mathbf{S}^{\ell}\right)$ with $d \widetilde{f}=\widetilde{\chi_{\mathbf{S}^{\ell}}}-\widetilde{p}^{*} \widetilde{\gamma}$. We have arrived to a
contradiction because $\widetilde{f}: \widetilde{\mathbf{S}^{\ell}} \rightarrow \mathbf{R}$ is a differentiable map, $d \widetilde{f} \not \equiv 0\left(d \widetilde{f}\left(\right.\right.$ fundamental vector field of $\left.\left.\Psi_{S}\right) \equiv 1\right)$ and $\widetilde{\mathbf{S}^{\ell}}$ is compact.

If $\ell=1$ the dimension of $\widetilde{\mathbf{S}}^{\ell}$ is 1 . Since $\tilde{e}_{F}$ is a differential 2-form, it vanishes identically. Therefore, we get $\|\widetilde{e}\|_{S / G_{S}} \leq 0$.

Corollary 2.3.7 If the action $\Phi$ has not fixed points, then for each liftable form $\omega \in \Omega^{*}\left(M-\Sigma_{M}\right)$ we have

$$
\begin{equation*}
\omega \in \mathcal{K}_{\bar{q}}^{*}(M) \Leftrightarrow \omega_{1}, \omega_{2} \in \mathcal{K}_{\bar{q}}^{*}(B) . \tag{8}
\end{equation*}
$$

Proof. The decomposition of $d \widetilde{\omega}$ is given by: $(d \widetilde{\omega})_{1}=d \widetilde{\omega}_{1}+\widetilde{e} \wedge \widetilde{\omega}_{2}$ and $(d \widetilde{\omega})_{2}=-d \widetilde{\omega}_{2}$. For each stratum $S$ of $M$ we get $\max \left(\left||\widetilde{\omega}|\left\|_{S},\right\| d \widetilde{\omega} \|_{S}\right)=\max \left(| | \widetilde{\omega}_{1}\left\|_{S / G_{S}},\right\| \widetilde{\omega}_{2}\| \|_{S / G_{S}},\left\|d \widetilde{\omega}_{1}+\widetilde{e} \wedge \widetilde{\omega}_{2}\right\|_{S / G_{S}},\left\|d \widetilde{\omega}_{2}\right\|_{S / G_{S}}\right)\right.$. Moreover, since $\left\|\tilde{e} \wedge \widetilde{\omega}_{2}\right\|_{S / G_{S}} \leq\|\widetilde{e}\|_{S / G_{S}}+\left\|\widetilde{\omega}_{2}\right\|_{S / G_{S}} \leq\left\|\widetilde{\omega}_{2}\right\|_{S / G_{S}}$ we obtain the relation
$\max \left(\|\widetilde{\omega}\|_{S},\|d \widetilde{\omega}\|_{S}\right)=\max \left(| | \widetilde{\omega}_{1}\left|\left\|_{S / G_{S}},\right\| \widetilde{\omega}_{2}\left\|_{S / G_{S}},\right\| d \widetilde{\omega}_{1}\right|\left\|_{S / G_{S}},\right\| d \widetilde{\omega}_{2} \|_{S / G_{S}}\right)$. Notice that the codimension of $S$ in $M$ is the codimension of $S / G_{S}$ in $B$. Thus

$$
\widetilde{\omega} \in F_{q_{k}} \Omega_{\mathcal{L}_{M}^{-1}}^{*}(S) \Leftrightarrow \widetilde{\omega}_{1}, \widetilde{\omega}_{2} \in F_{q_{k}} \Omega_{\mathcal{L}_{B}^{-1}}^{*}\left(S / G_{S}\right)
$$

from which the result holds.
2.3.8 Euler class. We write $F_{4}$ the union of 4-codimensional connected components of $M^{G}$, and also its image by $\pi$. Proposition 2.3 .6 shows that the restriction of the Euler form $e$ to $B-F_{4}$ belongs to $\mathcal{K}_{\overline{2}}^{2}\left(B-F_{4}\right)$, where $\overline{2}$ is the perversity $(0,1,2,2, \ldots)$. The class $[e] \in I H_{\overline{2}}^{2}\left(B-F_{4}\right)$ is the Euler class of $\Phi$. Notice that the Euler class $[\widetilde{e}]$ of $\widetilde{\Phi}$ belongs to $H^{2}(\widetilde{B})$.

## 3 Gysin sequence

In this section we establish the Gysin sequence that relates the cohomology of $M$ and the intersection cohomology of $B$. We also give a geometrical interpretation of the vanishing of the Euler class. Recall that $G$ denotes the unitary circle $\mathbf{S}^{1}$.

### 3.1 Integration along the fibers

Differential forms on $M-\Sigma_{M}$ and differential forms on $B-\Sigma_{B}$ are related by the integration $\oint$ along the fibers of the projection $\pi$. The Gysin sequence here obtained arises from the study of this integration $\oint$.
3.1.1 For each differential form $\omega \in \Omega^{*}\left(M-\Sigma_{M}\right)$ we define $\oint \omega=\omega_{2}$, the integration along the fibers of $\pi$. The form $\oint \omega$ belongs to $\Omega^{*-1}\left(B-\Sigma_{B}\right)$. Notice that for each $\alpha, \beta \in \Omega^{*}\left(B-\Sigma_{B}\right)$ we have $\oint \pi^{*} \alpha=0$ and $\oint \chi \wedge \pi^{*} \beta=\beta$.

If the action $\Phi$ is free, the above relations show that the short sequence

$$
0 \longrightarrow \Omega^{*}(B) \xrightarrow{\pi^{*}} \Omega^{*}(M) \xrightarrow{\oint} \Omega^{*-1}(B) \longrightarrow 0
$$

is exact. The associated long exact sequence

$$
\begin{equation*}
\cdots \rightarrow H^{i}(M) \xrightarrow{\oint^{*}} H^{i-1}(B) \xrightarrow{\wedge[e]} H^{i+1}(B) \xrightarrow{\pi^{*}} H^{i+1}(M) \rightarrow \cdots \tag{9}
\end{equation*}
$$

is the Gysin sequence of the free action $\Phi$ (see [7]).
If the action $\Phi$ is almost free the relation (8) shows that the integration $\oint$ defines a short exact sequence

$$
0 \longrightarrow \mathcal{K}_{\bar{q}}^{*}(B) \xrightarrow{\pi^{*}} I \mathcal{K}_{\bar{q}}^{*}(M) \xrightarrow{\oint} \mathcal{K}_{\bar{q}}^{*-1}(B) \longrightarrow 0
$$

Since $M$ and $B$ are homological manifolds, the associated long exact sequence is in fact (9) (see Proposition 2.2 .6 and $[5, \S 6.4]$ ), which has been proved already in [9].

If fixed points appear, the above relation (9) is not longer true (see §3.1.10 1)). The Gysin sequence of $\Phi$ arises from the study of the short exact sequence

$$
\begin{equation*}
0 \longrightarrow \operatorname{Ker} \oint \xrightarrow{\iota} I \mathcal{K}_{\bar{q}}^{*}(M) \xrightarrow{\oint} \operatorname{Im} \oint \longrightarrow 0, \tag{10}
\end{equation*}
$$

where $\iota$ is the inclusion. The crucial point is to compare $\operatorname{Ker} \oint$ and $\operatorname{Im} \oint$ with $\mathcal{K}_{\tilde{q}}^{*}(B)$. We will observe a shift in the perversities involved; this is due to the fact that for each fixed stratum $S$ we have

1) codimension of $S$ in $M=\left(\right.$ codimension of $S / G_{S}$ in $\left.B\right)+1$,
2) $\|\widetilde{\chi}\|_{S}=1$, and
3) $\|\widetilde{e}\|_{S / G_{S}}=2$ (except for the case $\left.\operatorname{dim} S=m-2\right)$.

This led us to consider the following perversities:

$$
\begin{aligned}
& \bar{r}=\left(r_{2}, r_{3}, r_{4}, r_{5}, \ldots\right) \text { with } r_{2}=r_{3}=r_{4}=0, \\
& \overline{r+2}=\left(0,1,2, r_{5}+2, r_{6}+2, \ldots\right) \text {, and } \\
& \bar{q}=\left(0,1,2,2, r_{5}+2, r_{6}+2, \ldots\right) .
\end{aligned}
$$

We begin recalling Propositions 3.2.3 and 3.3.2 of [10].
Proposition 3.1.2 Let $A$ be an unfoldable pseudomanifold (possibly with boundary). Fix $I=]-\varepsilon, \varepsilon[$ an interval of $\mathbf{R}$. The maps pr: $I \times\left(A-\Sigma_{A}\right) \rightarrow A-\Sigma_{A}$ and $J: A-\Sigma_{A} \rightarrow I \times\left(A-\Sigma_{A}\right)$, defined respectively by $\operatorname{pr}(t, a)=a$ and $J(a)=\left(t_{0}, a\right)$, for a fixed $t_{0} \in I$, induce the quasi-isomorphisms:

$$
p r^{*}: \mathcal{K}_{\bar{q}}^{*}(A) \rightarrow \mathcal{K}_{\bar{q}}^{*}(I \times A) \text { and } J^{*}: \mathcal{K}_{\bar{q}}^{*}(I \times A) \rightarrow \mathcal{K}_{\bar{q}}^{*}(A)
$$

Proof (sketch). Consider $\widetilde{p r}: \times \widetilde{A} \rightarrow \widetilde{A}$ and $\widetilde{J}: \widetilde{A} \rightarrow I \times \widetilde{A}$ defined by $\widetilde{p r}(t, \widetilde{a})=\widetilde{a}$ and $\widetilde{J}(\widetilde{a})=\left(t_{0}, \widetilde{a}\right)$. The two operators $p r^{*}$ and $J^{*}$ are well defined because, for each stratum $S$ of $A$, we have $\left\|p r^{*} \omega=\widetilde{p} r^{*} \widetilde{\omega}\right\|_{I \times S} \leq$ $\|\widetilde{\omega}\|_{S}$ and $\left\|\widehat{J^{*} \eta}=\widetilde{J}^{*} \widetilde{\eta}\right\|_{S} \leq\|\widetilde{\eta}\|_{I \times S}$, for any liftable form $\omega \in \Omega^{*}\left(A-\Sigma_{A}\right)$ and $\eta \in \Omega^{*}\left(I \times\left(A-\Sigma_{A}\right)\right)$. In fact, these two operators are homotopic; a homotopy operator is given by $H \eta=\int_{t_{0}}^{-} \eta$. This comes from the following facts:

- $\widetilde{H \eta}=\int_{t_{0}}^{-} \widetilde{\eta}($ on $I \times \widetilde{A})$,
- $\|\widetilde{H \eta}\|_{I \times S} \leq\|\widetilde{\eta}\|_{I \times S}$, and
- $d H \eta-H d \eta=(-1)^{i-1}\left(\eta-p r^{*} J^{*} \eta\right)$,
where $\eta \in \Omega^{i}\left(I \times\left(A-\Sigma_{A}\right)\right)$ is a liftable form.

Proposition 3.1.3 Let $A$ be a $n$-dimensional compact unfoldable pseudomanifold. Then

$$
H^{i}\left(\mathcal{K}_{\bar{q}}^{*}(c A)\right) \cong\left\{\begin{array}{cl}
H^{i}\left(\mathcal{K}_{\bar{q}}^{*}(A)\right) & \text { if } i \leq q_{n+1} \\
0 & \text { if } i>q_{n+1}
\end{array}\right.
$$

where the isomorphism is induced by the canonical projection pr: $\left.\left(A-\Sigma_{A}\right) \times\right] 0,1\left[\rightarrow\left(A-\Sigma_{A}\right)\right.$.
Proof (sketch). The complex $\mathcal{K}_{\tilde{q}}^{*}(c A)$ is naturally isomorphic (by restriction) to the subcomplex $C^{*}$ of $\mathcal{K}_{\bar{q}}^{*}(A \times]-1,1[)$ made up of the forms $\eta$ satisfying:
a) $\eta \equiv 0$ on $(A-\Sigma) \times\{0\} \quad$ if (degree of $\eta)>q_{n+1}$,
b) $d \eta \equiv 0$ on $(A-\Sigma) \times\{0\} \quad$ if (degree of $\eta)=q_{n+1}$, and
c) $\sigma^{*} \eta \equiv \eta$ on $\left(A-\Sigma_{A}\right) \times(]-1,1[-\{0\})$ where $\left.\sigma: A \times\right]-1,1[\rightarrow A \times]-1,1[$ is defined by $\sigma(a, t)=\sigma(a,-t)$.

With the notations of the above Proposition (for $\varepsilon=1$ and $t_{0}=0$ ), we get: $p r^{*}\left(\mathcal{K}_{\bar{q}}^{i}(A)\right) \subset C^{i}$, for $i<q_{n+1} ; p r^{*}\left(\mathcal{K}_{\bar{q}}^{i}(A) \cap d^{-1}\{0\}\right) \subset C^{i}$, for $i=q_{n+1} ; J^{*} C^{i}=\{0\}$, for $i>q_{n+1}$ and $H\left(C^{*}\right) \subset C^{*}$. The same procedure used in §3.1.2 finishes the proof.
3.1.4 Kernel of $\oint$. The elements of $\operatorname{Ker} \oint$ are the differential forms $\pi^{*} \omega$ verifying
i) $\omega \in \Omega^{*}\left(B-\Sigma_{B}\right) \quad$ is a liftable form,
ii) $\widetilde{\omega} \in F_{q_{k}} \Omega_{\mathcal{L}_{B}^{-1}\left(S / G_{S}\right)}^{*}$ for each exceptional stratum $S$ with $\operatorname{dim} S=$
$n-k$ and for each fixed stratum $S$ with $\operatorname{dim} S=$ $n-k<n-4$,
iii) $\widetilde{\omega} \in F_{2} \Omega_{\mathcal{L}_{B}^{-1}\left(S / G_{S}\right)}^{*} \quad$ for each fixed stratum $S$ with $\operatorname{dim} S=n-4$, and
iv) $\widetilde{\omega} \in F_{0} \Omega_{\mathcal{L}_{B}^{-1}\left(S / G_{S}\right)}^{*-1}$ for each fixed stratum $S$ with $\operatorname{dim} S=n-2$.
(see (6)). The two last conditions are always fulfilled. In fact, the dimension of the fibers of $\mathcal{L}_{B}: \mathcal{L}_{B}^{-1}\left(S / G_{S}\right) \rightarrow S / G_{S}$ are 2 and 0 respectively.
Proposition 3.1.5 The map $\pi^{*}: I H_{\overline{r+2}}^{*}\left(B-F_{4}\right) \rightarrow H^{*}(\operatorname{Ker} \oint)$ is an isomorphism.
Proof. Consider $\mathcal{D}^{*}(B)$ the subcomplex of $\Omega^{*}\left(B-\Sigma_{B}\right)$ made up of the differential forms satisfying i) and ii). This complex is isomorphic to $\operatorname{Ker} \oint$ by $\pi^{*}$. The relations $\bar{q} \leq \overline{r+2}$ and $q_{k} \leq r_{k-1}+2$, for $k \geq 6$, imply that the restriction $\mathcal{D}^{*}(B) \rightarrow \mathcal{K}_{r+2}^{*}\left(B-F_{4}\right)$ is well defined. Now, it suffices to show that this restriction induces an isomorphism in cohomology. First of all notice that for each stratum $S$ the space $\mathbf{S}^{\ell} / G_{S}$ is a homological manifold. We have several possibilities:

1) $B=V \times c\left(\mathbf{S}^{\ell} / G_{S}\right)$ and $G_{S} \neq \mathbf{S}^{1}$. We have $F_{4}=\emptyset$ and $\mathcal{D}^{*}(B)=\mathcal{K}_{\bar{q}}^{*}(B)$. The result comes from the fact that $B$ is a homological manifold (see [5, §6.4]).
2) $B=V \times c\left(\mathbf{S}^{\ell} / G_{S}\right), G_{S}=\mathbf{S}^{1}$ and $\ell>3$. We have $F_{4}=\emptyset$, the local calculations of the intersection cohomology give $I H_{\overline{r+2}}^{j}(B) \cong I H_{\overline{r+2}}^{j}\left(\mathbf{S}^{\ell} / G_{S}\right)$ if $j \leq r_{\ell}+2$, and $I H_{\overline{r+2}}^{j}(B) \cong 0$ otherwise.

On the other hand, the operators used in $\S 3.1 .2$ and $\S 3.1 .3$ preserve the Cartan's filtration. Following the same procedure used there, we get:

$$
H^{*}(\mathcal{D}(B)) \cong H^{*}\left(\mathcal { D } ( c ( \mathbf { S } ^ { \ell } / G _ { S } ) ) \cong H ^ { * } \left\{\omega \in \mathcal{K}_{\bar{q}}^{j}\left(\left(\mathbf{S}^{\ell} / G_{S}\right) \times\right]-1,1[)\right.\right. \text { such that }
$$

$$
\begin{array}{ll}
\text { a) } \omega \equiv 0 & \text { on }\left(\mathbf{S}^{\ell} / G_{S}-\Sigma_{\mathbf{S}^{\ell} / G_{S}}\right) \times\{0\} \text { if } j>q_{\ell+1}=r_{\ell}+2, \\
\text { b) } d \omega \equiv 0 & \text { on }\left(\mathbf{S}^{\ell} / G_{S}-\Sigma_{\mathbf{S}^{\ell} / G_{S}}\right) \times\{0\} \text { if } j=q_{\ell+1}=r_{\ell}+2, \text { and } \\
\text { c) } \sigma^{*} \omega \equiv \omega & \text { on } \left.\left.\left(\mathbf{S}^{\ell} / G_{S}-\Sigma_{\mathbf{S}^{\ell} / G_{S}}\right) \times\{0\} \quad\right\}\right), \\
\cong H^{*}\left(\left\{\omega \in \mathcal{K}_{\bar{q}}^{j}\left(\mathbf{S}^{\ell} / G_{S}\right) / \omega \equiv 0 \text { if } j>r_{\ell}+2, \text { and } d \omega \equiv 0 \text { if } j=r_{\ell}+2\right\}\right),
\end{array}
$$

which is isomorphic to $I H_{\frac{*}{r+2}}^{*}(B)$.
3) $B=V \times c\left(\mathbf{S}^{\ell} / G_{S}\right), G_{S}=\mathbf{S}^{1}$ and $\ell=3$. We have $\mathcal{K}_{\frac{1}{r+2}}^{*}\left(B-F_{4}\right)=\mathcal{K}_{\frac{1}{r+2}}^{*}\left(V \times\left(\mathbf{S}^{3} / G_{S}\right) \times\right] 0,1[)$. The local calculations of the intersection cohomology show $I H_{\overline{r+2}}^{*}\left(B-F_{4}\right) \cong H^{*}\left(\mathbf{S}^{3} / G_{S}\right)$.

Using the same procedure as before, we get:

$$
H^{*}(\mathcal{D}(B)) \cong H^{*}\left(\mathcal{D}\left(c\left(\mathbf{S}^{3} / G_{S}\right)\right)\right) \cong H^{*}\left(\left\{\omega \in \mathcal{K}_{\bar{q}}^{*}\left(\left(\mathbf{S}^{3} / G_{S}\right) \times\right]-1,1[) / \sigma^{*} \omega=\omega\right\}\right)
$$

$\cong H^{*}\left(\mathbf{S}^{3} / G_{S}\right)$.
4) $B=V \times c\left(\mathbf{S}^{\ell} / G_{S}\right), G_{S}=\mathbf{S}^{1}$ and $\ell=1$. We have $\Sigma_{B}=\emptyset$ and therefore $\mathcal{D}^{*}(B)=\mathcal{K}_{\overline{r+2}}^{*}(B)=$ $\left\{\right.$ liftable forms of $\left.\Omega^{*}(B)\right\}$.
5) General case. The space $B$ possesses a cover by open sets $\mathcal{W}=\{W\}$ and every $W$ satisfies one of the previous conditions. We finish the proof if we construct a subordinated partition of unity $\{f\}$ such that

$$
\begin{equation*}
\omega \in \mathcal{K}_{\bar{q}}^{*}\left(B-F_{4}\right)\left(\text { resp. } \mathcal{D}^{*}(B)\right) \Rightarrow f \omega \in \mathcal{K}_{\bar{q}}^{*}\left(B-F_{4}\right)\left(\text { resp. } \mathcal{D}^{*}(B)\right) . \tag{11}
\end{equation*}
$$

To this end, take $\{f\}$ a partition of unity made up of controlled functions (see [15]). It is easy to check that each function $f$ is a liftable one (see $[10, \S 4.1 .5]$ ). Since the lifting $\tilde{f}$ is constant on the fibers of each $\mathcal{L}_{B}: \mathcal{L}_{B}^{-1}\left(S / G_{S}\right) \rightarrow S / G_{S}$ we get $\|\widetilde{f}\|_{S / G_{S}}=\|d \widetilde{f}\|_{S / G_{S}} \leq 0$. Therefore (11) holds.
3.1.6 Image of $\oint$. Recall that for a liftable differential form $\omega=\pi^{*} \alpha+\chi \wedge \pi^{*} \beta$ on $I \Omega^{*}\left(M-\Sigma_{M}\right)$ the perverse degrees $\|\widetilde{\omega}\|_{S}$ and $\|d \widetilde{\omega}\|_{S}$, where $S$ is a stratum of $\Sigma_{M}$, are calculated by:

$$
\begin{aligned}
\|\widetilde{\omega}\|_{S} & =\max \left(\|\widetilde{\alpha}\|_{S / G_{S}},\|\widetilde{\chi}\|_{S}+\|\widetilde{\beta}\|_{S / G_{S}}\right) \quad \text { and } \\
\|d \widetilde{\omega}\|_{S} & =\max \left(\|d \widetilde{\alpha}+\widetilde{e} \wedge \widetilde{\beta}\|_{S / G_{S}},\|\widetilde{\chi}\|_{S}+\|d \widetilde{\beta}\|_{S / G_{S}}\right) .
\end{aligned}
$$

Therefore, a differential form $\pi^{*} \beta$ belongs to the image of $\oint$ if and only if there exists a differential form $\alpha$ satisfying:
i) $\alpha, \beta \in \Omega^{*}\left(B-\Sigma_{B}\right) \quad$ are liftable forms,
ii) $\widetilde{\alpha}, \widetilde{\beta} \in F_{q_{k}} \Omega_{\mathcal{L}_{B}^{-1}\left(S / G_{S}\right)}^{*} \quad$ for each exceptional stratum $S$ with $\operatorname{dim} S=n-k$,
iii) $\widetilde{\beta} \in F_{q_{k}-1} \Omega_{\mathcal{C}_{B}^{-1}\left(S / G_{S}\right)}^{*}, \quad$ for each fixed stratum $S$ with $\operatorname{dim} S=n-k \leq n-4$ $\|\widetilde{\alpha}\|_{S / G_{S}} \leq q_{k}$ and $\|\widetilde{\widetilde{\beta}}+\widetilde{e} \wedge \widetilde{\beta}\|_{S / G_{S}} \leq q_{k}$
iv) $\left.\widetilde{\beta}\right|_{S / G_{S}} \equiv 0 \quad$ for each fixed stratum $S$ with $\operatorname{dim} S=n-2$.

The relations $\bar{r} \leq \bar{q}$ and $r_{k-1} \leq q_{k}-1$, for $k \geq 4$, imply that $\mathcal{K}_{\bar{r}}^{*}(B, \partial B)$ is a subcomplex of $\operatorname{Im} \oint$ (taking $\alpha=0$ ). Moreover we have

Proposition 3.1.7 The inclusion $\mathcal{K}_{\vec{r}}^{*}(B, \partial B) \hookrightarrow \operatorname{Im} \oint$ induces an isomorphism in cohomology.
Proof. We consider several cases.

1) $B=V \times c\left(\mathbf{S}^{\ell} / G_{S}\right)$ and $G_{S} \neq \mathbf{S}^{1}$. We have $\mathcal{K}_{\vec{r}}^{*}(B, \partial B)=\mathcal{K}_{\vec{r}}^{*}(B)$ and $\operatorname{Im} \oint=\mathcal{K}_{\bar{q}}^{*}(B)$. The result comes from the fact that $B$ is a homological manifold.
2) $B=V \times c\left(\mathbf{S}^{\ell} / G_{S}\right), G_{S}=\mathbf{S}^{1}$ and $\ell>1$. We have $\mathcal{K}_{\bar{r}}^{*}(B, \partial B)=\mathcal{K}_{\bar{r}}^{*}(B)$ and therefore

$$
H^{j}\left(\mathcal{K}_{\bar{r}}^{*}(B, \partial B)\right) \cong\left\{\begin{array}{cl}
H^{j}\left(\mathbf{S}^{\ell} / G_{S}\right) & \text { if } j \leq r_{\ell} \\
0 & \text { if } j>r_{\ell}
\end{array}\right.
$$

(see §3.1.2 and §3.1.3).
On the other hand, remark that we can change in iii) the form $\widetilde{e}$ by the (pullback of the) Euler form $\tilde{\epsilon}$ of $\widetilde{\Psi_{S}}$ (see (7)). Since the operators used in $\S 3.1 .2$ and $\S 3.1 .3$ preserve the form $\tilde{\epsilon}$ we get, following the same procedure used there, the isomorphisms:

$$
\begin{gathered}
H^{*}(\operatorname{Im} \oint) \cong H^{*}\left(\operatorname{Im} \oint: I \mathcal{K}_{\bar{q}}^{*}\left(c \mathbf{S}^{\ell}\right) \rightarrow \Omega^{*-1}\left(c\left(\mathbf{S}^{\ell}-\Sigma_{\mathbf{S}^{\ell}}\right) / G_{S}\right)\right) \\
\cong H^{*}\left(\left\{\beta \in \mathcal{K}_{\bar{q}}^{j}\left(\left(\mathbf{S}^{\ell} / G_{S}\right) \times\right]-1,1[) / \exists \alpha \in \mathcal{K}_{\bar{q}}^{j+1}\left(\left(\mathbf{S}^{\ell} / G_{S}\right) \times\right]-1,1[)\right.\right. \text { satisfying }
\end{gathered}
$$

a) $\alpha \equiv \beta \equiv 0 \quad$ on $\left(\mathbf{S}^{\ell} / G_{S}-\Sigma_{\mathbf{S}^{\ell} / G_{S}}\right) \times\{0\}$ if $j \geq r_{\ell}+2$,
b) $d \alpha+\epsilon \wedge \beta \equiv d \beta \equiv 0 \quad$ on $\left(\mathbf{S}^{\ell} / G_{S}-\Sigma_{\mathbf{S}^{\ell} / G_{S}}\right) \times\{0\}$ if $j=r_{\ell}+1$, and
c) $\sigma^{*} \alpha \equiv \alpha$ and $\sigma^{*} \beta \equiv \beta \quad$ on ( $\left.\left.\left.\mathbf{S}^{\ell} / G_{S}-\Sigma_{\mathbf{S}^{\ell} / G_{S}}\right) \times\{0\} \quad\right\}\right)$

$$
\cong H^{*}\left(\left\{\beta \in \mathcal{K}_{\bar{q}}^{j}\left(\mathbf{S}^{\ell} / G_{S}\right) / \exists \alpha \in \mathcal{K}_{\bar{q}}^{j+1}\left(\mathbf{S}^{\ell} / G_{S}\right)\right.\right. \text { satisfying }
$$

a) $\alpha \equiv \beta \equiv 0 \quad$ if $j \geq r_{\ell}+2$, and
b) $d \alpha+\epsilon \wedge \beta \equiv d \beta \equiv 0$
if $\left.\left.j=r_{\ell}+1 \quad\right\}\right)$.

These calculations imply directly

$$
H^{j}(\operatorname{Im} \oint) \cong\left\{\begin{array}{cl}
H^{j}\left(\mathbf{S}^{\ell} / G_{S}\right) & \text { if } j \leq r_{\ell} \\
0 & \text { if } j \geq r_{\ell}+2
\end{array}\right.
$$

Consider now a cycle $\beta$ in $\mathcal{K}_{\bar{q}}^{r_{\ell}+1}\left(\mathbf{S}^{\ell} / G_{S}\right)$ with $d \alpha+\epsilon \wedge \beta \equiv 0$, for some $\alpha \in \mathcal{K}_{\bar{q}}^{r_{\ell}+2}\left(\mathbf{S}^{\ell} / G_{S}\right)$. Since the action $\Psi_{S}$ has not fixed points, the map $\wedge[\epsilon]: H^{r_{\ell}+1}\left(\mathcal{K}_{\bar{q}}^{*}\left(\mathbf{S}^{\ell} / G_{S}\right)\right) \rightarrow H^{r_{\ell}+3}\left(\mathcal{K}_{\bar{q}}^{*}\left(\mathbf{S}^{\ell} / G_{S}\right)\right)$ is a monomorphism (see §3.1.1). Thus, there exists $\gamma \in \mathcal{K}_{\bar{q}}^{r_{\ell}}\left(\mathbf{S}^{\ell} / G_{S}\right)$ with $d \gamma=\beta$. This implies the vanishing of $H^{r_{\ell+1}}(\operatorname{Im} \oint)$ and therefore the isomorphism $H^{*}(\operatorname{Im} \oint) \cong H^{*}\left(\mathcal{K}_{\bar{r}}(B, \partial B)\right)$.
3) $B=V \times c\left(\mathbf{S}^{\ell} / G_{S}\right), G_{S}=\mathbf{S}^{1}$ and $\ell=1$. We have $B=V \times[0,1[$ and therefore $\operatorname{Im} \oint=$ $\mathcal{K}_{\bar{r}}^{*}(B, \partial B)=\{$ liftable forms $\} \cap \Omega^{*}(B, \partial B)$.
4) General case. Same procedure followed in $\S 3.1 .55)$.

We arrive to the main result of this work.

Theorem 3.1.8 Let $\Phi: \mathbf{S}^{1} \times M \rightarrow M$ be an action of $\mathbf{S}^{1}$ on a manifold $M$. For each perversity $\bar{r}=$ $\left(0,0,0, r_{5}, r_{6}, \ldots\right)$ there exists a long exact sequence

$$
\begin{equation*}
\cdots \rightarrow H^{i}(M) \xrightarrow{\oint^{*}} I H_{\bar{r}}^{i-1}\left(M / \mathbf{S}^{1}, \partial\left(M / \mathbf{S}^{1}\right)\right) \xrightarrow{\wedge[e]} I H_{r+2}^{i+1}\left(\left(M-F_{4}\right) / \mathbf{S}^{1}\right) \xrightarrow{\pi^{*}} H^{i+1}(M) \rightarrow \cdots \tag{12}
\end{equation*}
$$

where
a) $\oint$ is the integration along the fibers of the projection $\pi: M \rightarrow M / \mathbf{S}^{1}$,
b) $\overline{r+2}=\left(0,1,2, r_{5}+2, r_{6}+2, \ldots\right)$,
c) $F_{4}$ is the union of 4 -codimensional connected components of the fixed point set of $\Phi$, and
d) $[e] \in I H_{\frac{\overline{2}}{2}}^{2}\left(\left(M-F_{4}\right) / \mathbf{S}^{1}\right)$ is the Euler class of $\Phi$.

Proof. Consider the perversity $\bar{q}=\left(0,1,2,2, r_{5}+2, r_{6}+2, \ldots\right)$. The short exact sequence

$$
0 \longrightarrow \operatorname{Ker} \oint \xrightarrow{\iota} I \mathcal{K}_{\bar{q}}^{*}(M) \xrightarrow{\oint} \operatorname{Im} \oint \longrightarrow 0
$$

produces the exact long sequence

$$
\cdots \rightarrow H^{i}(M) \xrightarrow{\oint^{*}} H^{i-1}(\operatorname{Im} \oint) \xrightarrow{\delta} H^{i+1}(\operatorname{Ker} \oint) \xrightarrow{\iota^{*}} H^{i+1}(M) \rightarrow \cdots
$$

(see (10) and Proposition 2.2.6). The connecting operator of this sequence is defined by $\delta[\beta]=\left[\pi^{*}(e \wedge \beta)\right]$. The result comes now from Propositions 3.1.5 and 3.1.7.

Corollary 3.1.9 Let $\Phi: \mathbf{S}^{1} \times M \rightarrow M$ be an action of $\mathbf{S}^{1}$ on a manifold $M$. If the codimension of the fixed point set is at least 5, we get the following exact sequence

$$
\cdots \rightarrow H^{i}(M) \xrightarrow{\oint^{*}} H^{i-1}\left(M / \mathbf{S}^{1}\right) \xrightarrow{\wedge[e]} I H_{\overline{2}}^{i+1}\left(M / \mathbf{S}^{1}\right) \xrightarrow{\pi^{*}} H^{i+1}(M) \rightarrow \cdots .
$$

Proof. By hypothesis we have $F_{4}=\emptyset$ and $\partial M / \mathbf{S}^{1}=\emptyset$. Applying Theorem 3.1.8, for $\bar{r}=\overline{0}$, and [5, page 153] the result follows.

### 3.1.10 Remarks.

1) The sequence (12) does not degenerate necessarily in (9). In fact, consider $\mathbf{S}^{2 \ell+1}$ the unit sphere of $\mathbf{C}^{\ell+1}$, where the product induces the action $\Psi: \mathbf{S}^{1} \times \mathbf{S}^{2 \ell+1} \rightarrow \mathbf{S}^{2 \ell+1}$. Identify $\mathbf{S}^{2 \ell+2}$ with the suspension $\Sigma \mathbf{S}^{2 \ell+1}=\mathbf{S}^{2 \ell+1} \times[-1,1] /\left\{\mathbf{S}^{2 \ell+1} \times\{1\}, \mathbf{S}^{2 \ell+1} \times\{-1\}\right\}$. Consider the action $\Phi: \mathbf{S}^{1} \times \mathbf{S}^{2 \ell+2} \rightarrow \mathbf{S}^{2 \ell+2}$ defined by $\Phi(\theta,[x, t])=[\Psi(\theta, x), t]$. If $\ell \geq 2$ then $\partial\left(\mathbf{S}^{2 \ell+2} / \mathbf{S}^{1}\right)=F_{4}=\emptyset$ and the sequence (12) becomes

$$
\cdots \rightarrow H^{i}\left(\mathbf{S}^{2 \ell+2}\right) \rightarrow H^{i-1}\left(\Sigma \mathbf{C} \mathbf{P}^{\ell}\right) \rightarrow I H_{\overline{2}}^{i+1}\left(\Sigma \mathbf{C P}^{\ell}\right) \rightarrow H^{i+1}\left(\mathbf{S}^{2 \ell+2}\right) \rightarrow \cdots
$$

On the other hand, the sequence (9)

$$
\cdots \rightarrow H^{i}\left(\mathbf{S}^{2 \ell+2}\right) \rightarrow H^{i-1}\left(\Sigma \mathbf{C} \mathbf{P}^{\ell}\right) \rightarrow H^{i+1}\left(\Sigma \mathbf{C} \mathbf{P}^{\ell}\right) \rightarrow H^{i+1}\left(\mathbf{S}^{2 \ell+2}\right) \rightarrow \cdots
$$

cannot be exact, therefore it is different from (12).
For $\ell=1$ we get

$$
\cdots \rightarrow H^{i}\left(\mathbf{S}^{4}\right) \rightarrow H^{i-1}\left(\mathbf{S}^{3}\right) \rightarrow H^{i+1}\left(\mathbf{S}^{2}\right) \rightarrow H^{i+1}\left(\mathbf{S}^{4}\right) \rightarrow \cdots
$$

and for $\ell=0$ we obtain

$$
\cdots \rightarrow H^{i}\left(\mathbf{S}^{2}\right) \rightarrow H^{i-1}([0,1],\{0,1\}) \rightarrow H^{i+1}([0,1]) \rightarrow H^{i+1}\left(\mathbf{S}^{2}\right) \rightarrow \cdots
$$

2) Up to a non-zero factor, the Euler class of $\Phi$ does not depend on the choice of the good metric. Indeed, let $\mu_{1}$ and $\mu_{2}$ be two good metrics of $M$. Suppose first that $\partial\left(M / \mathbf{S}^{1}\right)=\emptyset$. For $\bar{r}=\overline{0}$ we obtain from the two Gysin sequences:

$$
H^{0}\left(M / \mathbf{S}^{1}\right) \xrightarrow{\wedge\left[e_{\mu_{j}}\right]} I H_{\overline{2}}^{2}\left(\left(M-F_{4}\right) / \mathbf{S}^{1}\right) \xrightarrow{\pi^{*}} H^{2}(M) j=1,2
$$

The space $H^{0}\left(M / \mathbf{S}^{1}\right)$ is of dimension one, then, by exactness, $\operatorname{dim} \operatorname{Ker} \pi^{*} \leq 1$ and $\operatorname{Im}\left(\wedge\left[e_{\mu_{1}}\right]\right)=\operatorname{Ker} \pi^{*}=$ $\operatorname{Im}\left(\wedge\left[e_{\mu_{2}}\right]\right)$. Now, there exists $\lambda \in \mathbf{R}-\{0\}$ such that $\left[e_{\mu_{1}}\right]=\lambda\left[e_{\mu_{2}}\right]$.

If $\partial\left(M / \mathbf{S}^{1}\right) \neq \emptyset$ we get the above result for $M / \mathbf{S}^{1}-\partial\left(M / \mathbf{S}^{1}\right)$. Now it suffices to apply the isomorphism $I H_{\overline{2}}^{*}\left(M / \mathbf{S}^{1}\right) \cong I H_{\overline{2}}^{*}\left(M / \mathbf{S}^{1}-\partial\left(M / \mathbf{S}^{1}\right)\right)$, induced by restriction, to get the result.

In particular, the fact that the Euler class of $\Phi$ respect to the metric $\mu$ vanishes does not depend of the choice of the good metric $\mu$.
3) If the action $\Phi$ has not fixed points, we obtain two exact sequences:

$$
\begin{aligned}
& \cdots \xrightarrow{\pi^{*}} H^{i}(M) \xrightarrow{\oint} H^{i-1}\left(M / \mathbf{S}^{1}\right) \xrightarrow{\wedge[e]} H^{i+1}\left(M / \mathbf{S}^{1}\right) \xrightarrow{\pi^{*}} \cdots \\
& \cdots \xrightarrow{\pi^{*}} H^{i}(M) \xrightarrow{\oint} H^{i-1}\left(M / \mathbf{S}^{1}\right) \xrightarrow{\wedge[E]} H^{i+1}\left(M / \mathbf{S}^{1}\right) \xrightarrow{\pi^{*}} \cdots .
\end{aligned}
$$

The first is (12) and the second one is given by [10]. Here $E$ denotes the Euler form associated to a global invariant riemannian metric on $M$. The same argument used in 2) shows that $[e]$ and $[E]$ are that there exists $\lambda \in \mathbf{R}-\{0\}$ such that $[e]=\lambda[E]$.

### 3.2 Vanishing of the Euler class

Consider $\Phi$ an almost free action on a compact manifold $M$. The Euler class $[e] \in H^{2}\left(M / \mathbf{S}^{1}\right)$ vanishes if and only if there exists a locally trivial fibration $\Upsilon: M \rightarrow \mathbf{S}^{1}$, whose fibers are transverse to the orbits of $\Phi$ (see [9], [10]).

We show now that if the action $\Phi$ has fixed points, the vanishing of the Euler class $[e] \in I H_{\overline{2}}^{2}((M-$ $\left.F_{4}\right) / \mathbf{S}^{1}$ ) has also a geometrical interpretation, for that we need some preliminary results.

Lemma 3.2.1 If the Euler class of $\Phi$ vanishes then the codimension of $M^{\mathbf{S}^{1}}$ is at most two.
Proof. Let $S$ be a fixed stratum on $M$. Since the Euler class of $\Phi$ vanishes then the Euler class of $\Psi_{S}$ also vanishes. From $\S 3.1 .103)$ and $[10, \S 4.3]$ we deduce $H^{1}\left(\mathbf{S}^{\ell}\right) \neq 0$ and therefore $\ell=1$.

Lemma 3.2.2 Suppose that $M$ is compact and that the codimension of $M^{\mathbf{S}^{1}}$ is two. There exist a compact manifold $\widehat{M}$, an almost free action $\widehat{\Phi}: \mathbf{S}^{1} \times \widehat{M} \rightarrow \widehat{M}$ and a commutative diagram

where
i) $\widehat{\mathcal{L}}_{M}$ is an equivariant differentiable map,
ii) the restriction of $\widehat{\mathcal{L}}_{M}$ to each connected component $C$ of $\widehat{M}-\widehat{\mathcal{L}}_{M}^{-1}\left(M^{\mathbf{S}^{1}}\right)$ is a diffeomorphism, and
iii) the adherence $\bar{C}$ is manifold with boundary $\widehat{\mathcal{L}}_{M}^{-1}\left(M^{\mathbf{S}^{1}}\right)$.

There also exist two good metrics $\mu$ and $\hat{\mu}$, of $M$ and $\widehat{M}$ respectively, such that $\widehat{\mathcal{L}}_{M}^{*} \mu=\hat{\mu}$, on $\widehat{M}-\widehat{\mathcal{L}}_{M}^{-1}\left(\Sigma_{M}\right)$.

Proof. For the first part we proceed as in $\S 4.1 .1$, taking $M^{\mathbf{S}^{1}}$ instead of $M_{m-\ell-1}$.
For the second one we remark that the set of fixed points $M^{\mathbf{S}^{1}}$ has a neighborhood on $M$ which is diffeomorphic to $M^{\mathbf{S}^{1}} \times D^{2}$. The restriction of the above diagram to this neighborhood becomes

where $\widehat{\mathcal{L}}_{M}(x, \theta, r)=(x,[\theta,|r|]), \mathcal{L}_{\widehat{M}}(x, \widetilde{\theta}, r)=\left(x, \mathcal{L}_{\mathbf{S}^{1}}(\widetilde{\theta}), r\right), \mathcal{L}_{M}(x, \widetilde{\theta}, r)=\left(x,\left[\mathcal{L}_{\mathbf{S}^{1}}(\widetilde{\theta}),|r|\right]\right)$ and $\mathcal{L}_{\mathbf{S}^{1}}: \widetilde{\mathbf{S}^{1}} \rightarrow$ $\mathbf{S}^{1}$ is a trivial covering.

Out of that neighborhood we take $\mu$ the restriction of a good metric of $M$ and $\hat{\mu}=\widehat{\mathcal{L}}_{M}^{*} \mu$. Inside we consider: $\widetilde{\mu}=\nu+\mathcal{L}_{\mathbf{S}^{1}}^{*} d \theta+d r^{2}, \hat{\mu}=\nu+d \theta+d r^{2}$ and $\mu=\nu+d \theta+d r^{2}$ where $\nu$ is a riemannian metric on $M^{\mathbf{S}^{1}}, d \theta$ is an invariant metric on $\mathbf{S}^{1}$ and $d r^{2}$ is the canonical metric on ]-1, $1[$. It is easy to see that they satisfy the given conditions.

Lemma 3.2.3 Suppose that the codimension of $M^{\mathbf{S}^{1}}$ is two. The Euler class of $\Phi$ and the Euler class of $\Phi^{\prime}: \mathbf{S}^{1} \times\left(M-M^{\mathbf{S}^{1}}\right) \rightarrow\left(M-M^{\mathbf{S}^{1}}\right)$ vanish simultaneously.

Proof. The orbit space $M / \mathbf{S}^{1}$ is an homological manifold with boundary $M^{\mathbf{S}^{1}} / \mathbf{S}^{1}$. Thus, the inclusion $\left(M-M^{\mathbf{S}^{1}}\right) / \mathbf{S}^{1} \hookrightarrow M / \mathbf{S}^{1}$ induces an isomorphism $H^{*}\left(\left(M-M^{\mathbf{S}^{1}}\right) / \mathbf{S}^{1}\right) \cong H^{*}\left(M / \mathbf{S}^{1}\right)$. We have finish, because the Euler class of $\Phi^{\prime}$ is the restriction of the Euler class of $\Phi$, for a good metric.

A singular foliation $\mathcal{F}$ (see [13]) on $M$ is said to be transverse to $\Phi$ if for each point $x \in M-M^{\mathrm{S}^{1}}$ the leaf of $\mathcal{F}$ and the orbit of $\Phi$ passing trough $x$, are transverse.

Theorem 3.2.4 Let $\Phi: \mathbf{S}^{1} \times M \rightarrow M$ be an action of $\mathbf{S}^{1}$ on a compact manifold $M$. The following statements are equivalent:
a) the Euler class $[e] \in I H_{\frac{1}{2}}^{2}\left(\left(M-F_{4}\right) / \mathbf{S}^{1}\right)$ vanishes, and
b) there exists a singular foliation transverse to $\Phi$, whose restriction to $M-M^{\mathbf{S}^{1}}$ is a locally trivial fibration over $\mathbf{S}^{1}$.

Proof. If there are not fixed points, the result was already proved in [10, $\S 4.1]$, by means of $\S 3.1 .103$ ). Then, we can suppose $M^{\mathbf{S}^{1}} \neq \emptyset$.
$\mathrm{a}) \Rightarrow \mathrm{b}) \quad$ Take $\mu$ and $\hat{\mu}$ the metrics given by Lemma 3.2.2. Since $\mathcal{L}_{M}^{*} \mu=\hat{\mu}$ we get $\mathcal{L}_{M}^{*}[e]=[\hat{e}]$ and therefore $[\hat{e}]=0$. By $\S 3.1 .103$ ) and $[10, \S 4.1]$, there exists a locally trivial fibration $\Upsilon: \widehat{M} \rightarrow \mathbf{S}^{1}$ transverse to the fibers of $\widehat{\Phi}$.

Let $C$ be a connected component of $\widehat{M}-\widehat{\mathcal{L}}_{M}^{-1}\left(M^{\mathrm{S}^{1}}\right)$. It is easily checked that the distribution $\left(\widehat{\mathcal{L}}_{M}\right)_{*}\left(\operatorname{Ker} \Upsilon_{*} \cap T \bar{C}\right)$ is locally of finite type, therefore it defines a singular foliation $\mathcal{F}$ (see [10, pages $185-186]$ ). By $\S 3.2 .2$ ii), the foliation $\mathcal{F}$ is transverse to $\Phi$. So, it remains to verify that the restriction of $\mathcal{F}$ to $M-M^{\mathbf{S}^{1}}$ is defined by a locally trivial fibration over $\mathbf{S}^{1}$.

Since the restriction $\widehat{\mathcal{L}}_{M}: C \rightarrow\left(M-M^{\mathbf{S}^{1}}\right)$ is a diffeomorphism it suffices to show that $\Upsilon: C \rightarrow \mathbf{S}^{1}$ is a locally trivial fibration. Take a fiber $N$ of $\Upsilon$ we get $\widehat{M} \cong N \times[0,1] / \sim$, where $(x, 0) \sim(f(x), 1)$, for a diffeomorphism $f: N \rightarrow N$. The fibration $\Upsilon$ becomes $\Upsilon([x, t])=e^{2 \pi i t}$ and the action is tangent to the [ 0,1$]$-factor. Since $C$ is invariant, there exists a submanifold $N_{0} \subset N$, invariant by $f$, such that $C \cong N_{0} \times[0,1] / \sim$. This finishes the proof.
b) $\Rightarrow$ a) We show first that the codimension of $M^{\mathbf{S}^{1}}$ is two. Let $S$ be a fixed stratum of $\Phi$. The locally trivial fibration given by b) is defined by a closed differential form. Since $\mathbf{S}^{\ell}$ is an invariant submanifold of $M-M^{\mathbf{S}^{1}}$ then the restriction of the above form defines a locally trivial fibration on $\mathbf{S}^{\ell}$ transverse to $\Psi_{S}$ (see $[14]$ ). From [10, $\S 4.1$, and $\left.\S 4.3\right]$ we deduce that the Euler class of $\Psi_{S}$ vanishes, and therefore $\ell=1$.

Consider on $M-M^{S^{1}}$ an equivariant riemannian metric $\nu$ such that: i) the leaves of $\mathcal{F}$ and the orbits of $\Phi$ are orthogonal, and ii) $\nu(X, X)=1$. Thus, the associated characteristic form $\chi$ is a cycle. That is, the Euler class $[E]$ (in the sense of $[10]$ ) of $\Phi^{\prime}: \mathbf{S}^{1} \times\left(M-M^{\mathbf{S}^{1}}\right) \rightarrow\left(M-M^{\mathbf{S}^{1}}\right)$ vanishes. By §3.1.10 3), the Euler class $\left[e^{\prime}\right]$ of $\Phi^{\prime}$ also vanishes. Now we apply Lemma 3.2.3

As in $[10, \S 4.3$ and $\S 4.4]$, we obtain
Corollary 3.2.5 Under the conditions of the previous Theorem, if $B$ has not boundary and $H^{1}(M)=0$ then the Euler class of $\Phi$ is non-zero.

Proof. If the Euler class of $\Phi$ is 0 then the action $\Phi$ is almost free (consider $\S 3.2 .1$ and $\partial B=\emptyset$ ) and we can apply $[10, \S 4.3]$.

The example $\S 3.1 .101$ ), with $\ell=0$, show that the hypothesis $\partial B=\emptyset$ is necessary.
Corollary 3.2.6 Under the conditions of the previous Theorem, if the Euler class of $\Phi$ vanishes, then any equivariant unfolding $\widetilde{M}$ of $M$ possesses a finite covering of the form $N \times \mathbf{S}^{1}$.

Proof. Let $\mu$ be a good metric of $M$. The relation $\mathcal{L}_{M}^{*}[e]=[\widetilde{e}]$ imply the Euler class of $\widetilde{\Phi}$ vanishes. Therefore, $\widetilde{M}$ has a finite covering of the form $N \times \mathbf{S}^{1}$ (see [10]).

## 4 Appendix

The Appendix is devoted to the proofs of Proposition 1.1.6, Proposition 1.2.6 and Lemma 2.3.2.

### 4.1 Proof of Proposition 1.1.6

The construction of the equivariant unfolding that we exhibit now is the equivariant version of [1]. We need the two following Lemmas.

Lemma 4.1.1 Suppose len $(M)=\ell+1>0$. Then there exists a manifold $\widehat{M}$ supporting an action of $G$ and a continuous equivariant map $\widehat{\mathcal{L}}_{M}: \widehat{M} \rightarrow M$ such that:
a) $\operatorname{len}(\widehat{M})<\operatorname{len}(M)$,
b) $\widehat{\mathcal{L}}_{M}:\left(\widehat{M}-\widehat{\mathcal{L}}_{M}^{-1}\left(M_{m-\ell-1}\right)\right) \longrightarrow\left(M-M_{m-\ell-1}\right)$ is a finite trivial differentiable covering, and
c) for each stratum $S$ of dimension $m-\ell-1$, for each $x_{0} \in S$ and for each $\hat{x}_{0} \in \widehat{\mathcal{L}}_{M}^{-1}\left(x_{0}\right)$ there exists a commutative diagram

where
i) $\mathcal{U} \subset M$ and $\widehat{\mathcal{U}} \subset \widehat{M}$ are neighborhoods of $x_{0}$ and $\hat{x}_{0}$ respectively,
ii) $(U, \varphi)$ is a distinguished chart of a tubular neighborhood of $S$,
iii) $\hat{\varphi}$ is a $G_{S}$-equivariant diffeomorphism, and
iv) $Q(x, \theta, r)=(x,[\theta,|r|])$.

Proof. We follow the process of "removing a tubular neighborhood" of [8] (see also [4]). In fact, we shall take the double of the original construction in order to avoid corners.

Let $\mathcal{S}$ be the family of strata of $M$ with dimension $m-\ell-1$. We choose for each $S \in \mathcal{S}$ a tubular neighborhood $\mathcal{N}_{S}=\left(\mathcal{T}_{S}, \tau_{S}, S, D^{\ell+1}\right)$ as in §1.1.2. Notice that the map $\bigcup_{S \in \mathcal{S}} \tau_{S}: \bigcup_{S \in \mathcal{S}} \mathcal{T}_{S} \rightarrow \bigcup_{S \in \mathcal{S}} S$ is equivariant. For each $S \in \mathcal{S}$ consider

$$
D_{S}=\left\{x \in \mathcal{T}_{S} / \varphi(x)=\left(\tau_{S}(x),\left[\theta, \frac{1}{2}\right]\right),(U, \varphi) \in \mathcal{A}\right\}
$$

It follows from §1.1.2 ii) that $\bigcup_{S \in \mathcal{S}} D_{S}$ is a submanifold of $M$ of codimension 1. The map

$$
F:\left(\bigcup_{S \in \mathcal{S}} D_{S}\right) \times(]-1,1[-\{0\}) \longrightarrow \bigcup_{S \in \mathcal{S}}\left(\mathcal{T}_{S}-S\right)
$$

defined by $F(z, r)=\varphi^{-1}\left(\tau_{S}(z),[\theta,|r|]\right)$, where $\varphi(z)=\left(\tau_{S}(z),\left[\theta, \frac{1}{2}\right]\right)$, is a two-fold equivariant differentiable trivial covering.

We define now $\widehat{\mathcal{L}}_{M}: \widehat{M} \rightarrow M$.

- $\widehat{M}$ is the quotient of $\left\{\left(M-\bigcup_{S \in \mathcal{S}} S\right) \times\{-1,1\}\right\} \cup\left\{\left(\bigcup_{S \in \mathcal{S}} D_{S}\right) \times\right]-1,1[ \}$ by the equivalence relation generated by:

$$
(x, j) \sim(z, r) \text { iff }|r|=j r \text { and } x=F(z,|r|) .
$$

In the terminology of [8], the manifold $\widehat{M}$ is the double of $M \odot \bigcup_{S \in \mathcal{S}} S$.

- $\widehat{\mathcal{L}}_{M}(y)=\left\{\begin{array}{cl}x & \text { if } y=(x, j) \in\left(M-\bigcup_{S \in \mathcal{S}} S\right) \times\{-1,1\} \\ F(z,|r|) & \left.\text { if } y=(z, r) \in\left(\bigcup_{S \in \mathcal{S}} D_{S}\right) \times\right]-1,1[.\end{array}\right.$

The set $\widehat{M}$ is a manifold supporting an action of $G$ (taking the trivial action on $\{-1,1\}$ and $]-1,1[$ ). The map $\widehat{\mathcal{L}}_{M}$ is an equivariant continuous function. By construction $\operatorname{len}(\widehat{M})=\operatorname{len}(M)-1$ and the restriction of $\widehat{\mathcal{L}}_{M}$ to $\widehat{M}-\widehat{\mathcal{L}}_{M}^{-1}\left(M_{m-\ell-1}\right)$ is a finite trivial covering. This gives a) and b).

In order to check c) we first notice that near $S \in \mathcal{S}$ the map $\widehat{\mathcal{L}}_{M}$ becomes

$$
\left.\widehat{\mathcal{L}}_{M}: D_{S} \times\right]-1,1\left[\rightarrow \mathcal{T}_{S} \text { defined by } \widehat{\mathcal{L}}_{M}(z, r)=F(z,|r|) .\right.
$$

Consider $(U, \varphi)$ a distinguished chart of $\mathcal{N}_{S}$ with $x_{0} \in U$ and take $\mathcal{U}=\tau^{-1}(U)$ and $\widehat{\mathcal{U}}=\widehat{\mathcal{L}}_{M}^{-1}(\mathcal{U})$ which is $\left.\left(\tau^{-1}(U) \cap D_{S}\right) \times\right]-1,1[$. They satisfy i) and ii).

Define the map $\hat{\varphi}$ by $\hat{\varphi}(z, r)=\left(\tau_{S}(z), \theta, r\right)$, where $\varphi(z)=\left(\tau_{S}(z),\left[\theta, \frac{1}{2}\right]\right)$; it is a $G_{S}$-diffeomorphism satisfying iv).

Since the isotropy subgroup of any point of $\widehat{\mathcal{U}}$ is included in $G_{S}$ we conclude that the trace on $\widehat{\mathcal{U}}$ of the stratification defined by $G$ is the stratification defined by $G_{S}$. Therefore $\hat{\varphi}$ is an isomorphism, which gives iii).

It is shown in [8] that the manifold $\widehat{M}$ is unique. So, for any equivariant diffeomorphism $f: M \rightarrow N$ there exists an equivariant diffeomorphism $\widehat{f}: \widehat{M} \rightarrow \widehat{N}$ with $\mathcal{L}_{N} \widehat{f}=f \mathcal{L}_{M}$.

### 4.1.3 Proof of Proposition 1.1.6

Assume inductively that the statement is true for any good action of length smaller than len $(M)$. Let $\widehat{\mathcal{L}}_{M}: \widehat{M} \rightarrow M$ be the equivariant map given by $\S 4.1 .1$. Recall that $\operatorname{len}(\widehat{M})<\operatorname{len}(M)$, therefore by
induction there exists an equivariant unfolding $\mathcal{L}_{\widehat{M}}: \widetilde{M} \rightarrow \widehat{M}$. We consider the composition $\mathcal{L}_{M}=\mathcal{L}_{\widehat{M}} \widehat{\mathcal{L}}_{M}$, which verifies $\S 1.1 .51$ ) and 2 ). It remains to verify 3 ).

Let $x_{0}$ be a point of a non regular stratum $S$ and let $\widetilde{x}_{0}$ be a point of $\mathcal{L}_{M}^{-1}\left(x_{0}\right)$. If $x_{0} \notin M_{m-\ell-1}$ we consider $\hat{x}_{0} \in \widehat{M}$ with $\widehat{\mathcal{L}}_{M}\left(\hat{x}_{0}\right)=x_{0}$ and we apply the induction hypothesis to $\widehat{\mathcal{L}}_{M}$. If $x_{0} \in M_{m-\ell-1}$ we apply $\S 4.1 .1$ and we obtain the commutative diagram (13).

Defining $\widetilde{\mathcal{U}}=\mathcal{L}_{\widehat{M}}^{-1}(\widehat{\mathcal{U}})$, we get i) and ii). Since $\hat{\varphi}$ is a $G_{S}$-equivariant isomorphism the composition $\hat{\varphi} \mathcal{L}_{\widehat{M}}$ is a $G_{S}$-equivariant unfolding. By uniqueness of ${ }^{\wedge}$ we have $\left.U \times \mathbf{S}^{\ell} \times\right]-1,1\left[\cong U \times \widetilde{\mathbf{S}^{\ell}} \times\right]-1,1[$. This gives iii) and iv).

### 4.2 Proof of Proposition 1.2.6

Let $\mathcal{L}_{M}: \widetilde{M} \rightarrow M$ be an equivariant unfolding of $M$ (see Proposition 1.1.6). Since $\mathcal{L}_{M}$ is equivariant it induces the continuous map $\mathcal{L}_{B}: \widetilde{M} / G=\widetilde{B} \rightarrow B$ defined by $\mathcal{L}_{B}(\widetilde{\pi}(\widetilde{x}))=\pi \mathcal{L}_{M}(\widetilde{x})$. Then a) and b) hold. In order to prove c) assume inductively that the statement is true for any good action of length smaller than len $(M)$. In particular, for any non regular stratum $S$ we have a commutative diagram

satisfying a), b) and c).
Take $y_{0} \in \pi(S), \widetilde{y}_{0} \in \mathcal{L}_{B}^{-1}\left(y_{0}\right), x_{0}=\pi\left(y_{0}\right)$ and $\widetilde{x}_{0}=\widetilde{\pi}\left(\widetilde{y}_{0}\right)$. Consider the diagram (1) given by Proposition 1.1.6. We can choose the open set $U$ small enough to have:

1) $V=\pi(U)$ is a neighborhood of $y_{0}$, and
2) a differentiable section $\sigma$ of $\pi: U \rightarrow V$.

Define $\mathcal{V}=\rho^{-1}(V)$ and $\widetilde{\mathcal{V}}=\mathcal{L}_{B}^{-1}(\mathcal{V})$. We get i) and ii). Following the same method used in the proof of Proposition 1.2.2 and using the equivariance of $\mathcal{L}_{M}$, we can write:

$$
\mathcal{V}=\mathcal{L}_{B}^{-1} \rho^{-1}(V)=\widetilde{\pi} \mathcal{L}_{M}^{-1} \pi^{-1} \pi \tau^{-1} \sigma(V)=\mathcal{L}_{M}^{-1} \tau^{-1} \sigma(V) / G_{S}
$$

Since the restriction $\left.\widetilde{\varphi}: \mathcal{L}_{M}^{-1} \tau^{-1} \sigma(V) \rightarrow \sigma(V) \times \widetilde{\mathbf{S}^{\ell}} \times\right]-1,1\left[\right.$ is a $G_{S^{-}}$equivariant diffeomorphism (see $\S 1.1 .5$ ), it induces the homeomorphism $\left.\widetilde{\psi}: \widetilde{\mathcal{V}} \rightarrow V \times \widetilde{\mathbf{S}^{\ell}} / G_{S} \times\right]-1,1[$. The map $\widetilde{\psi}$ satisfies iii). Finally, for each $\widetilde{\pi}(\widetilde{x}) \in \widetilde{\mathcal{V}}$ we can write:

$$
\begin{array}{rlr}
R \widetilde{\psi} \widetilde{\pi}(\widetilde{x}) & =R\{\pi \times \widetilde{p} \times \text { identity }\} \widetilde{\varphi}(\widetilde{x}) & \text { (definition of } \widetilde{\psi}) \\
& =\Pi P \widetilde{\varphi}(\widetilde{x}) & (\text { see }(16)) \\
& =\Pi \varphi \mathcal{L}_{M}(\widetilde{x}) & (\text { see }(1)) \\
& =\psi \pi \mathcal{L}_{M}(\widetilde{x}) & (\text { see } \S 1.2 .2) \\
& =\psi \mathcal{L}_{B} \widetilde{\pi}(\widetilde{x}) & (\text { see }(3)) \tag{3}
\end{array}
$$

from which iv) is satisfied.

### 4.3 Proof of Lemma 2.3.2

We prove this result for any good action, where we suppose $X \equiv \widetilde{X} \equiv 0$ if $G \neq \mathbf{S}^{1}$.

Assume inductively that the statement is true for any good action such that the length of the induced stratification is smaller than len $(M)$. It suffices to construct two riemannian metrics $\nu$ and $\widetilde{\nu}$, on $M-\Sigma_{M}$ and $\widetilde{M}$ respectively, satisfying b), c) and d); in this case the metrics:

$$
\begin{equation*}
\mu=\int_{G} \Phi_{g}^{*} \nu \quad \text { and } \quad \widetilde{\mu}=\int_{G} \widetilde{\Phi}_{g}^{*} \widetilde{\nu} \tag{13}
\end{equation*}
$$

(see [2, page 304]), verify a), b), c) and d).
In order to get $\nu$ and $\widetilde{\nu}$ we proceed in two steps: (I) construction of two riemannian metrics $\nu \mathcal{U}$ and $\widetilde{\nu}_{\mathcal{U}}$ on open sets of the type $\mathcal{U}-\Sigma_{M}$ and $\widetilde{\mathcal{U}}$ respectively (see (1)), satisfying b), c), d) and (II) pasting them by a partition of unity.
(I) Fix an open set $\mathcal{U}$ as in (1). Consider $\mathcal{M}$ and $\widetilde{\mathcal{M}}$ two riemannian metrics, on $\mathbf{S}^{\ell}-\Sigma_{\mathbf{S}^{\ell}}$ and $\widetilde{\mathbf{S}^{\ell}}$ respectively, satisfying b), c) and d), which exist by induction. We can suppose $\widetilde{\mathcal{M}}$ invariant by the structural group of $\mathcal{L}_{M}: \mathcal{L}_{M}^{-1}(S) \rightarrow S$ (averaging as in (13)). By means of $(U, \varphi)$ we identify $\left(\mathcal{U}, \widetilde{\mathcal{U}}, \mathcal{L}_{M}\right)$ with $\left(U \times c \mathbf{S}^{\ell}, U \times \widetilde{\mathbf{S}^{\ell}} \times\right]-1,1[, P)$.

There exists a decomposition $T \widetilde{\mathcal{U}}=T\left(\widetilde{\mathbf{S}^{\ell}} \times\right]-1,1[) \oplus \widetilde{E}$, where $\widetilde{X}$ is tangent to $\widetilde{E}$ if $S$ is an exceptional stratum. The map $P$ induces a decomposition $T\left(\mathcal{U}-\Sigma_{M}\right)=T\left\{\left(\mathbf{S}^{\ell}-\Sigma_{\mathbf{S}^{\ell}}\right) \times\right] 0,1[ \} \oplus T U$. We define $\nu_{\mathcal{U}}=\mu_{U}+\mathcal{M}+d r^{2}$ and $\widetilde{\nu}_{\mathcal{U}}=P^{*} \mu_{U}+\widetilde{\mathcal{M}}+d r^{2}$ where $\mu_{U}$ is any riemannian metric on $U$. We need to check properties b), c) and d).
b) $\quad P^{*} \nu_{\mathcal{U}}=P^{*} \mu_{U}+\mathcal{L}_{\mathbf{S}^{\ell}}^{*} \mathcal{M}+d r^{2}=P^{*} \mu_{U}+\widetilde{\mathcal{M}}+d r^{2}=\widetilde{\nu}_{\mathcal{U}}$.
c) For any exceptional stratum $R$ the natural projection $\left.p r: U \times \widetilde{\mathbf{S}^{\ell}} \times\right]-1,1\left[\rightarrow U \times \widetilde{\mathbf{S}^{\ell}}\right.$ induces a map $p r: \mathcal{L}_{M}^{-1}(R) \rightarrow \mathcal{L}_{M}^{-1}(S)$ with $\mathcal{L}_{M}=\mathcal{L}_{M} \circ p r$. So, it suffices to check c) on $\mathcal{L}_{M}^{-1}(S)$. Here, we have: $\widetilde{\nu}_{\mathcal{U}}(\widetilde{X})=P^{*} \mu_{U}(\widetilde{X})=\mu_{U}(X)$.
d) For each stratum $R$ meeting $\mathcal{U}$ the fibers of $\mathcal{L}_{M}: \mathcal{L}_{M}^{-1}(R) \rightarrow R$ are included on the fibers of $P$. Each of the fibers of $P$ is $G_{S}$-equivariantly isometric to $\left(\widetilde{\mathbf{S}^{\ell}}, \widetilde{\mathcal{M}}\right)$. We apply now the induction hypothesis.
(II) Let $\Xi=\{\mathcal{U}\}$ and $\widetilde{\Xi}=\{\widetilde{\mathcal{U}}\}$ be coverings of $M$ and $\widetilde{M}$ respectively made up of open sets as in (I). Consider $\left\{\nu \mathcal{U}, \widetilde{\nu}_{\mathcal{U}}\right\}_{\mathcal{U}} \in \Xi$ a family of riemannian metrics satisfying b), c) and d). Fix a partition of unity $\left\{f_{\mathcal{U}}: \mathcal{U} \rightarrow[0,1]\right\}$ subordinated to $\Xi$. Notice that the family $\left\{\widetilde{f}_{\mathcal{U}}=f_{\mathcal{U}} \mathcal{L}_{M}: \widetilde{\mathcal{U}} \rightarrow[0,1]\right\}$ is a partition of unity subordinated to $\widetilde{\Xi}$. Define the riemannian metrics $\nu=\sum_{\Xi} f_{\mathcal{U}} \nu_{\mathcal{U}}$ on $M-\Sigma_{M}$ and $\widetilde{\nu}=\sum_{\widetilde{\Xi}} \widetilde{f}_{\mathcal{U}} \widetilde{\nu}_{\mathcal{U}}$ on
$\widetilde{M}$. It is easily checked that $\nu$ and $\widetilde{\nu}$ satisfy b) and c). For d) we use $\S 1.1 .2$ iv).

## References

[1] J.P. Brasselet, G. Hector and M. Saralegi: Théorème de De Rham pour les variétés stratifiées. Ann. Global Anal. Geom. 9(1991), 211-243.
[2] G. Bredon: Introduction to compact transformation groups. - Pure and Appl. Math., Academic Press, New York and London, 1972.
[3] J.L. Brylinsky: Equivariant intersection cohomology. - Preprint of the I.H.E.S., June 1986.
[4] M. Davis: Smooth G-manifolds as collections of fiber bundles.. - Pacific J. Math. 77(1978), 315-363.
[5] M.Goresky and R.MacPherson: Intersection homology theory. - Topology 19(1980), 135-162.
[6] M. Goresky and R. MacPherson: Intersection homology II. - Invent. Math. 71(1983), 77-129.
[7] W. Greub, S. Halperin and R. Vanstone: Connections, curvature, and cohomology. - Pure Appl. Math., Academic Press, New York and London, 1972.
[8] K. Jänich: On the classification of $O(n)$-manifolds. - Math. Ann. 176(1968), 53-76.
[9] M. Nicolau and A. Reventós: On some geometrical properties of Seifert bundles. - Israel J. Math. 47(1984), 323-334.
[10] M. Saralegi: The Euler class for flows of isometries. - Res. Notes in Math. 131(1985), 220-227.
[11] M. Saralegi: Homological properties of stratified spaces. - To appear in Illinois J. Math.
[12] M. Saralegi and G. Hector: Formes différentielles d'intersection des prestratifications abstraites. C. R. Acad. Sci. Paris 308(1989), 25-28.
[13] H.J. Sussmann: Orbits of families of vector fields and integrability of distributions. - Trans. Amer. Math. Soc. 180(1973), 171-188.
[14] D. Tischler: On fibering certain foliated manifolds over $\mathbf{S}^{1}$. - Topology 9 (1980), 153-154.
[15] A. Verona : Stratified mappings - Structure and Triangulability. - Lecture Notes in Math. 1102, Springer Verlag 1984.

## G. Hector

Laboratoire de Géometrie et Analyse
U.R.A. D 746 au C.N.R.S.

Université Claude Bernard (Lyon 1)
69622 Villeurbanne Cedex
France
M. Saralegi

Consejo Superior de Investigaciones Científicas Instituto de Matemáticas y Física Fundamental

Serrano 123
28006 Madrid
Spain


[^0]:    ${ }^{1}$ First published in Transactions of the American Mathematical Society 338(1993), 263-288.
    ${ }^{2}$ Supported by the DGICYT-Spain: Beca formación personal investigador y Proyecto PB88-0012.

