MORPHISMS FROM P2 TO Gr(2,C%).
A. EL MAZOUNI, F. LAYTIMI, AND D.S. NAGARAJ

ABSTRACT. In this note we study morphisms from P? to Gr(2, C*)
from the point of view of the cohomology class they represent in

the Grassmannian. This leads to some new result about projection
of d-uple imbedding of P2 to P°.

1. INTRODUCTION

We denote by P? the projective plane over the field of complex num-
bers and Gr(2,C*) be the Grassmannian of two-dimentional quotient
spaces of C*. In this paper we investigate the possible types of non-
constant morphisms P? — Gr(2,C*). Any non-constant morphism
P? — Gr(2,C*) determines a cohomology class in H*(Gr(2,C*),Z).
We consider the following problem:

Determine the necessary and sufficient conditions that a cohomology
class of HY(Gr(2,C%),Z) has to satisfy in order to be represented by a
morphism from P? — Gr(2,C*%)?

It is easy to see that if a cohomology class is represented by a mor-
phism from P? then it has to satisfy an obvious necessary condition
(see Lemma (B.3)). We show that in general this condition is not suf-
ficient. The following result shows that there are classes satisfying the
condition but are not represented by morphisms:

Theorem 1.1. Let ¢ and a be two integers. Assumec >4 and1 < a <
c—2orc?—c+2<a<c®—1. Then the cohomology class (a,c® — a)
is not represented by a morphism P? — Gr(2,C4).

The following theorem shows that in some cases morphisms exist:

Theorem 1.2. () For every ¢ > 1 the cohomology classes (0,c*) and
(c%,0) are represented by morphisms P? — Gr(2,C*).

1) Let 1 < ¢ <3 and 0 < € < ¢ be integers. Then the cohomology
class (£, c* — {) is represented by a morphism P? — Gr(2,C*).

2) If c = 4 and 3 < ¢ < 13 then there are morphisms P? — Gr(2,C%)
representing the cohomology class (£,16 — ).
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3) Let ¢ > 5 be an integer. Let k be the largest integer such that
k.c < (c® —3c+2)/2. Then for every integer { in one of the following
intervals [t(c — 3) + 2,t.c] for 1 <t <k or [(c* —3c+2)/2+1,¢%/2]
there are morphisms P? — Gr(2,C*) representing the cohomology class
(¢, c2—1). Also, for every such £ there is a morphism whose cohomology
class is (¢ — (,0).

It is also shown here (see, Remark (B-19)) that for every integer n > 1
there are morphisms
fn:P* — Gr(2,CY
such that f,, is one to one onto its image and f¥(Ogy2.c1)(1)) = Op2(n).
Acknowledgments: The third author would like to thank, IFIM, Uni-
versité Lille, and Université d’ Artois, France.

2. MORPHISMS TO GRASSMANNIAN

Here we recall some results about morphisms from a variety to a
Grassmannian variety.

Definition 2.1. Let X be a variety over the field C of complex numbers
and s be a positive integer. A vector bundle F over X is said to be
generated by s sections if there a surjection of vector bundles

C®0x — E.

Definition 2.2. Let X be a projective variety. Let r and k be two
positive integers. Let E; and E5 be two vector bundles of rank r over
X. Two vector bundle surjections

¢1 : (Cr+k (029 OX — El,
and
G2 C* ® Ox — By,

are said to be equivalent if there exists an isomorphsim of vector bun-
dles ¢ : Fy — E5 over X such that the following diagram commutes:

CH 0y 25 R
| 1
CHh e 0y 2 R,

The following two lemmas are well known(see, for example [[]). We
include the proofs of these lemmas for the sake of completeness.

Lemma 2.3. Let X be a projective variety. Let r and k be two positive
integers. There is a natural bijection between the following two sets:
1) The set of equivalence classes of surjection of vector bundles

$:C* 0y — E,
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where E is a vector bundle of rank r on X.
2) The set of morphisms f: X — Gr(r,C"**), where Gr(r, C"tk) is
the Grassmannian of v dimensional quotient of C'+*.

Proof: Given a surjection ¢ : C"** ©® Ox — E by sending
r— {CF = B

defines a morphism f : X — Gr(r,C"**). This defines a map from
the set in 1) to the set in 2).

To prove the existence of the map in the other direction, we first
note the following: on Gr(r, C"**) there is a canonical vector bundle
surjection C™* ® Ogr(rcrvy — @, where @ is the rank r bundle on
Gr(r,C™*) whose fiber at z € Gr(r, C"*¥) is the quotient vector space
corresponding to x.

Now given a morphism f : X — Gr(r, C"**) by pulling back by
f the canonical surjection of vector bundles on the Grassmannian, we
get a surjection of vector bundles

C** @ Ox = f(C ® Ogyrerry) — f5(Q).

This gives a map from the set in 2) to the set in 1). These two maps
are clearly inverse to each other hence we get the required bijection. []

Theorem 2.4. Let X be a projective variety. There is a natural bijec-
tion between the following two sets:
1) The set of equivalence classes of surjections of vector bundles

Cr—i_k@OX — K

with rank(E) = r and det(FE) is ample.
2) The set of morphisms f : X — Gr(r,C"**) with f finite (onto
its image).

Proof: Given an element of the set in 1), i.e., a surjection, C"** @
Ox — E with 1k(E) = r and det(F) is ample, then as in Lemma/(P.3))
it determines a morphism f : X — Gr(r, C"™*), also, it follows from
Lemma(R.3), that f*(Q) ~ E. Hence f*det(Q) =~ det(E). Since
det ()| 15y =~ frdet(Q)|¢-1(fx)) is trivial, the ampleness assump-
tion on det(E) implies dim(f~!(f(x))) < 0. Thus, if det(F) is ample,
then f is finite onto its image.

In the other direction, if f : X — Gr(r,C"**) is finite morphism
onto its image, then

det(f*Q) ~ *(detQ)
is ample, as pull-back of an ample bundle remains ample under finite

morphism. O
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Let L be an vector subspace of dimension one in C*. Then the pro-
jective 2 plane
P? = Gr(2,C*/L)
is naturally a subvariety of Gr(2,C*). Similarly, if H is an one dimen-
sional quotient vector space of C*, then the projective 2 plane
Py = Gr(2,(CY)'/H")

is also naturally a subvariety of Gr(2,C*), where (C*)* (resp. H*)
denotes the dual vector space of C* (resp. of H). Note that P% is
the subset of Gr(2,C*) consists of all those quotient vector spaces of
dimension two of C* which has H as their quotient.

Definition 2.5. A morphism f : P? — Gr(2,C%) is said to be trivial
if it is one of the following:

e a) f is a constant morphism.
e b) Image of f is P2 for some one dimensional subspace L of C*.
e ¢) Image of f is P% for some one dimensional quotient H of C*.

Example 2.6. It is known that (see, for example [§]) the Veronese
surface (2-uple embedding of P? in P?) is contained in a smooth quadric
in P°. As any two smooth quadrics are isomorphic via a projective
automorphism we see that there is an embedding of P? in Gr(2,C*).
In fact, the global sections
S1 = (Xa Z)a Sg = (KX)> S3 = (ZaY) and S4 = (X>0)
of Opz(1) @ Op2(1) gives a vector bundle surjection
(C4 ® OPZ — OPZ(l) © O]pﬁ(l)
Then by Lemma (BJ) we get morphism ¢ : P? — Gr(2,C*). It is
easy to see that ¢ is an embedding and ¢ composed with the natural
embedding of Gr(2,C?) into P? is given by the quadrics
X?-YZ XY -27% Y’-XZ XZ X XY.
As these quadrics form a basis for the space of quadrics on P? we get
that the veronese embedding of P? in P° factors through Gr(2,C*).

Example 2.7. More generally, for any positive integers a and b the
global sections

s1=(X"2%, so=(Y" X", s3=(Z2%Y") and s, = (X*0)
of Opz(a) ® Op2(b) gives a vector bundle surjection
(C4 ® OPZ — OPZ (CL) © OPZ (b)

Then by Lemma (B-3) we get a morphism ¢ : P? — Gr(2,C*).
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Example 2.8. Let Tp2 denotes the tangent bundle of P2. Then one
has an exact sequence (See, page 409 of [B])

O — OP2 — Opz(l)s — TPZ — O

;From this we see that the space of all global sections H°(Tp2) of the
tangent bundle is a vector space of dimension eight. Now it is easy to
see that if we choose four linearly independent general sections of the
tangent bundle we get a surjective morphism

O]?)Q — T]p2.

This surjection give rise to a morphism from P? to Gr(2,C%). Since
the tangent bundle is not direct sum of line bundles, this morphism is
different from the morphisms given by example above.

3. NON-TRIVIAL MORPHISMS FROM P? TO Gr(2,C*)

On the Grassmaian Gr(2,C*) one has universal exact sequence:
(1) 0—S—C"®Ogaci — Q — 0,

where S and @) are respectively the universal sub bundle and quotient
bundle of rank two on Gr(2,C*). The fiber of @ (resp. of S) at a point
p € Gr(2,C%) is the two dimensional quotient space (resp. subspace,
which is the kernal of this quotient map) of C* corresponding to the
point p. It is known (see, page 197 and 411 of [JJ]) that the cohomology
group H*(Gr(2,C*),Z) is equal to

(2) Z[c2(Q)] © Zlea (5))],

where ¢2(Q) (resp. c2(.9)) is the second Chern class of @ (resp. of S). If
¢ : P? — Gr(2,C*) is a non constant morphism then the cohomology
class of ¢,([P?]) is an element of H*(Gr(2,C%),Z). Tt is easy to see
that the morphism b) (resp. ¢)) of Example(R.5) gives the cohomology
class (0,1) (resp. (1,0)) of the decomposition in (f]) of the cohomology
group. The exact sequence corresponding to cohomology class (0,1) is

(3) 0— QY1) - C*"® Op2 — Op2(1) B Op2 — 0.

The dual of the exact sequence (f) correspondence to the cohomology
class (1,0).

Question 1) a) Given the cohomology class (a, b) of the decompo-
sition in (f]) of the cohomology group does there exists a morphism
¢ : P? — Gr(2,C*) such that the cohomology class of this morphism is
(a,b)?

b) For which cohomology class (a,b) does there exists a generically
injective morphism ¢ : P? — Gr(2,C*) such the cohomology class of
this morphism is (a, b)?
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Question 2) Let @ be the vector bundle on Gr(2,C*) as in the
equation ([l). For which cohomology classes (a,b) does there exists a
morphism ¢ : P? — Gr(2,C?*) the bundle ¢*(Q) is indecomposable?

Remark 3.1. Let ¢ : P2 — Gr(2,C*) be a morphism. By pulling back
the universal exact sequence ([) on Gr(2,C*) we get an exact sequence

(4) 0— ¢*(S) = C'® Opz — ¢"(Q) — 0,

of vector bundles on P2. By dualizing the exact sequence (fl) we get
another exact sequence

(5) 0 — ¢*(Q)Y — C*® Op> — ¢*(S)" — 0,
of vector bundles on P?. By Lemma (B-3) the surjection
(6) C*® Op> — ¢*(S)" — 0,

gives a morphism from P? to Gr(2,C*Y) which we denote by ¢ and call
the dual morphism. If (a,b) is the cohomology class of a morphism ¢

then it is clear that the cohomology class of the dual morphism ¢V is
(b, a).

Remark 3.2. Let ¢ : P2 — Gr(2,C*) be a closed immersion. Assume
that ¢ is a non trivial imbedding as in Definition((2.3). It follows from
the morphism ¢ or ¢V, is given by a surjection

(7) (C4 ® OPZ — OPZ(l) © O[PQ(l)

If the morphism ¢ is given by (i) then ¢.([P?]) = (1,3) and the class of
(¢V).([P?]) = (3,1). Thus the only classes (a,b) represented by reqularly
imbedded P* in Gr(2,C*) are (1,0),(0,1),(1,3) and (3,1).

Lemma 3.3. Let ¢ : P — Gr(2,C*%) be a non constant morphism.
Then the cohomolgy class given by the morphism ¢ is of the form
(a,c* — a), for some integers ¢ > 0 and 0 < a < 2.

Proof: By pulling back the universal exact sequence ([J) by ¢ we get
the following exact sequence of vector bundles on P? :

(8) 0 — ¢*(S) = C'® Op2 — ¢*(Q) — 0.

Since, the bundle ¢*(@) is non-trivial and is a quotient of trivial bun-
dle, we see that the Chern classes c;(¢*(Q)) and co(¢*(Q)) are both
non-negative integers (we identify H*(P? Z) with Z by sending the
class [H|.[H] to 1 in Z, where [H] is the class of a hyper plane). Set
a = c(¢*(Q)) and ¢ = ¢1(¢*(Q)). Note that ¢ —a = cp(¢*(S)) =
c2((9*(9))Y), where (¢*(S))Y is the dual of the bundle ¢*(S). Since
(¢*(9))Y is generated by sections we must have ¢ —a > 0. This com-

pletes the proof of the lemma. O
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Remark 3.4. The following question arises naturally. Given (a,c*—a),
with ¢ > 0 and 0 < a < % does there exists a morphism ¢ : P2 —
Gr(2,C") such that the cohomolgy class given by the morphism ¢ is of
the form (a,c® — a)? In general this question has negative answer (see
Lemma (3-4) below). Also, we give below partial answer to the above
question (see Theorem(3-1) and Theorem([3-§)). We believe that there
are no morphisms from P? which represent the remaining cohomology
classes.

We need the following theorem:

Theorem 3.5. (Cayley-Bacharach theorem) Let S be a non-singular
surface and Z be a sub scheme of S of dimension zero. Then there
exists a rank two vector bundle E on S with a section s such that the
zero sub scheme of s is Z if and only if for every point p € Z the linear
system

|Z;Ks @ det(E)| = |ITz_pKs @ det(E)],

where Iy (respectively, Ty_r,)) denotes the ideal sheaf of Z (respec-
tively, of Z — {p}).

Proof: This is a consequence of [Theorem 7.[LT]]. (See, [f] page 731,
for the case Z is reduced).

Lemma 3.6. There is no morphism ¢ : P* — Gr(2,C*) such that the
cohomolgy class given by the morphism ¢ is of the form (1,15).

Proof: Assume there exists a morphism ¢ : P? — Gr(2,C*) such that
the cohomolgy class given by the morphism ¢ is of the form (1, 15). By
pulling back the universal exact sequence ([) by ¢ gives the following
exact sequence of vector bundles on P? :

(9) 0 — ¢*(S) = C'® Op2 — ¢*(Q) — 0.

with ¢2(¢*(Q)) = [H]? and cy(¢*(S)) = 15[H]?, where [H] is the hyper
plane class. More over it can be easily seen that ¢;(¢*(Q)) = 4[H].
Since £ = ¢*(Q) is generated by sections there exists a section of F
which vanishes at exactly one point p of P? with multiplicity one. But
then by Cayley-Bacharach theorem(B.J) the point must be a base point
for the complete linear system of the line bundle det(E)@Kpz = Opz(1).
But this is a contradiction. This proves the required result. 0
More generally we have the following:

Theorem 3.7. Let ¢ and a be two integers. Assumec >4 and1 < a <

c—2orc?—c+2<a<c®—1. Then the cohomology class (a,c® — a)

is not represented by a morphism P* — Gr(2,C4).
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Proof: If ¢ : P2 — Gr(2,C*) is a morphism such that the cohomology
class of the morphism is ¢ is (a,c* — a) then the cohomology class of
the dual morphism (see B.G) ¢V : P? — Gr(2,C*) is (¢* — a,a). So it
is enough to show that there are no morphisms from P? to Gr(2,C*)
such that the cohomolgy class is given by (a,c? —a) for 1 <a <c—2.
But note that for any zero dimensional sub scheme Z of P? the natural
morphism

H°(Op2(c — 3)) — H(Oz(c—3)
is surjective, if length of Oy is less than or equal to ¢ — 2. This will
imply the following: if Z is a zero dimensional sub scheme of P? such
that the length of O is less than or equal to ¢ — 2, then for any p € Z

(10) H*(Zz(c = 3)) # H*(Zz-p(c - 3)),

where Zp denotes the ideal sheaf of the sub scheme 7. On the other
hand if there exists a morphism ¢ : P? — Gr(2,C?%) such that the
cohomology class of the morphism is ¢ is (a, c*—a) then the pull back £
of the universal quotient bundle on Gr(2,C*) has ¢;(FE) = ¢, c2(E) = a.
Since F is generated by sections we can find section s such that the
scheme Z of zeros of this section is zero dimensional and length of O
is equal to a < ¢—2. Now by Cayley-Bacharach theorem (B.5) we must
have
H(Zz(c—3)) = H(Zz_py(c — 3)),

for every p € Z. But this leads to a contradiction to ([[(]). This proves
the reqired result. 0

Theorem 3.8. () For every ¢ > 1 the cohomology classes (0,c*) and
(c%,0) are represented by morphisms P* — Gr(2,C*).

1) Let1<e<3and0 << c? be integers. Then the cohomology
class (¢, c* — 0) 1is represented by a morphism P? — Gr(2,C*).

2) If c = 4 and 3 < £ < 13 then there are morphisms P> — Gr(2,C*)
representing the cohomology class (£,16 — 0).

3) Let ¢ > 5 be an integer. Let k be the largest integer such that
k.c < (c® —3c+2)/2. Then for every integer { in one of the following
intervals [t(c — 3) + 2,t.c] for 1 <t <k or[(c* —3c+2)/2+1,¢%/2]
there are morphisms P? — Gr(2,C*) representing the cohomology class
(¢, c?—1). Also, for every such £ there is a morphism whose cohomology
class is (¢ — (,0).

Proof: 0) If f : P*> — P? is a finite morphism then f*(Op2(1)) =
Op2(n) for some integer n > 0. Then the degree of the morphism is
equal to n?. Thus we see that if a cohomology class of the form (0, a)
or (a,0) is represented by a non constant morphism f : P? — P? if and
only if @ = n? for a positive integer n.
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1) If 1 < ¢ < 3 then for any zero dimensional sub scheme Z the vector
space HY(Iz(c—3)) is 0. Hence by Cayley-Bacharach theorem(B.5) there
exists a vector bundle E and a section s such that ¢;(E) = ¢ and zero
scheme of s is Z. It is enough to consider the case ¢ < ¢? /2, for if
¢ : P2 — Gr(2,C*) such that the cohomology class of the morphism
given by ¢ is (¢,c® — £) then the cohomology class of dual morphism
(see B)) ¢V is (2 — £, ¢). For £ < ¢*/2, by considering any reduced sub
scheme Z consisting of ¢ points we get an exact sequence

O—>Op2—>E—>Iz(C)—>0,

where I denotes the ideal sheaf of Z, where E is the vector bundle ob-
tained by Cayley Bacharach theorem. Then we see that F is generated
by sections and hence by 4 sections. This gives the required morphism
0.

2) For ¢ = 3 choose Z a reduced scheme consisting of three points
lying on a line. Then we see that Z satisfies Cayley - Bacharach con-
ditions with respect to line bundle Op2(1). Thus there exists vector
bundle E with ¢;(det(E)) = 4[H] and a section s such that (s)y = Z.
Also, We get an exact sequence

O—>O]P>2—>E—>Iz(4)—>0,

where I, denotes the ideal sheaf of Z. Then we see that F is generated
by sections and hence by 4 sections. This gives the required morphism
0.
For 4 < ¢ < 8 Let Z = {Py,..., P} be a reduced closed scheme
consisting of ¢ points such that no three points lie on a line. Then we
see that Z satisfies Cayley - Bacharach conditions with respect to line
bundle Opz(1). Thus there exists vector bundle E with c¢;(det(E)) =
4[H| and a section s such that (s)g = Z. Also, We get an exact sequence

0— Opz — E — Iz(4) — 0,

where I denotes the ideal sheaf of Z. Then we see that E is generated
by sections and hence by 4 sections. This gives the required morphism
¢. For 8 < ¢ < 13 the dual morphism ¢V of appropriate ¢ above gives
the reqired morphism.

3) Let t and ¢ be as in the Theorem. Let Z = {P;,..., P} be a
reduced closed scheme consisting of ¢ points such that no r.c+ 1 points
lie on a curve of degree r for 1 < r < t. Note that Z satisfies Cayley
- Bacharach conditions with respect to line bundle Op2(c — 3). Thus
there exists vector bundle E with ¢;(det(E)) = d[H] and a section s
such that (s)g = Z. Also, We get an exact sequence

0—>Op2—>E—>Iz(d)—>0,
9



where I, denotes the ideal sheaf of Z. Then we see that F is generated
by sections and hence by 4 sections. This morphism ¢ corresponds to
the cohomology class (¢, ¢* — (). The dual morphism ¢" corresponds to
the cohomology class (¢* — ¢, ¢). For £ in the interval [(¢* —3c+2)/2 +
1,c%/2) let Z = {Py,..., P} be a reduced closed scheme consisting
of ¢ points such that no r.c + 1 points lie on a curve of degree r for
1 <r < c¢—3. Then the rest of the proof is as before. O

Lemma 3.9. Let ¢ : P2 — Gr(2,C*%) be a non constant morphism.
Assume that ¢*(Q) is decomposable. Then the cohomolgy class given
by the morphism ¢ is of the form (a.b, (a + b)? — a.b) for some non
negative integers a,b with a + b > 0. Moreover, for any such tuple
(a.b, (a + b)? — a.b), there are morphisms ¢ : P2 — Gr(2,C*) whose
corresponding cohomology class is (a.b, (a + b)* — a.b).

Proof: By pulling back the universal exact sequence (([l)) by ¢ gives
the following exact sequence of vector bundles on P? :

(11) 0 — ¢*(S) — C*® Op2 — ¢*(Q) — 0.

By assumption ¢*(Q) ~ Opz2(a) @ Op2(b). Since the bundle ¢*(Q) is
quotient of trivial bundle implies we must have a,b > 0. On the other
hand ¢ is non constant morphism implies a + b > 0. Now, it is easy to
see that ca(¢*(Q)) = a.b and c3(¢*(S)) = (a + b)? — a.b Last assertion
of the Lemma follows from Example(27). O

Proposition 3.10. Let X and Y be two irreducible projective varieties.
Let S be any irreducible quasi-projective variety and sy € S be a point.
Let

F:XxS—->Y

be a morphism. Assume that Fy = F|xxs : X — Y is finite for all
s € S and F, is a birational onto its image. Then there is an open
subvariety U of S such that s € U and for s € U the morphism Fj is
a birational onto its image.

Proof: Consider the morphism G = F' X Idg : X x S — Y x §.
Then the assumption Fj is finite implies the morphism G is finite and
proper. Hence G = G,(Oxxs) is coherent sheaf of Oy.gs modules.
Let Z C Y x S be the sub variety on which the sheaf G,(Oxxs) is
supported. Then clearly the map p: Z — S, restriction of the natural
projection, is surjective. The section 1 € Oxxg gives an inclusion of
Ozin G. Let F =G/Oy4. Let Z; CY xS be the sub variety on which
the sheaf F supported. Let ¢ : Z; — S be the natural projection
and let U = {s € S|dimg~!(s) < dim(X)} then we see that by semi

continuity (see, page 95, Exercise (3.22) []), U is an open subset and
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is non-empty as so € U. For s € U the morphism Fj is an isomorphism
on X xs—G71(q71(s). Since G is finite G~ (¢~ (s) is proper closed sub
set of X x s and hence the morphism Fj is birational onto its image.
This proves the Proposition. [l

Proposition 3.11. Let a,b be two coprime positive integers. Let
fs : P? — Gr(2,CY
be the morphism given by a surjection
¢:C*® Op2 — Op2(a) @ Opa(b).

Then for a generic choice of ¢ the morphism is birational onto its
1mage.

Proof: Since the set of surjections ¢ is an open subset of
Hom(C*, H(Op2(a) @ Op2(D)))

The result follows from Proposition(B.1(), if we show the existence of
one such f,. If ¢ is given by the matrix

Xe zb
ye Xx°
zZe y®
X* 0

Since a, b are coprime, it is easy to see that the morphism fy : P? —
Gr(2,C*) corresponding to ¢ is birational onto its image. O

Remark 3.12. By choosing a = 1 and b = n and using the fact that
Gr(2,C*) is imbedded in P5 as a smooth quadric we get the following:
for every integer n > 1 there are morphisms

fn:P? — Gr(2,CY
such that f,, is one to one onto its image and f;;(Ocr2,c4) (1)) = Op2(n).
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