Communication Dans Un Congrès Année : 2024

Optimization Under Severe Uncertainty: a Generalized Minimax Regret Approach for Problems with Linear Objectives

Résumé

We study a general optimization problem with an uncertain linear objective. We address the uncertainty using two models: belief functions and, more generally, capacities. In the former model, we use the generalized minimax regret criterion introduced by Yager, while in the latter one, we extend this criterion, to find optimal solutions. This paper identifies some tractable cases for the resulting problem. Furthermore, when focal sets of the considered belief functions are Cartesian products of intervals, we develop a 2-approximation method that mirrors the well-known midpoint scenario method used for minimax regret optimization problems with interval data.
Fichier principal
Vignette du fichier
BELIEF_2024.pdf (268) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04704016 , version 1 (20-09-2024)

Identifiants

Citer

Tuan-Anh Vu, Sohaib Afifi, Éric Lefèvre, Frédéric Pichon. Optimization Under Severe Uncertainty: a Generalized Minimax Regret Approach for Problems with Linear Objectives. 8th International Conference on Belief Functions, Sep 2024, Belfast, United Kingdom. pp.197-204, ⟨10.1007/978-3-031-67977-3_21⟩. ⟨hal-04704016⟩

Collections

UNIV-ARTOIS LGI2A
17 Consultations
25 Téléchargements

Altmetric

Partager

More